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In this section we present some open problems and conjectures about some
interesting types of difference equations. Please submit your problems and
conjectures with all relevant information to G. Ladas: gladas@math.uri.edu

I pledge to donate the amount of $600 (USA) to the International Society of
Difference Equations, provided that the complete solutions of the open problems
and conjectures in this paper are brought to the attention of myself and the President
of the Society by the end of the year 2005.

On third-order rational difference equations,
part 6

E. CAMOUZIS#, G. LADAS*f and E. P. QUINN:

tAmerican College of Greece, 6 Gravias Street, Aghia Paraskevi, 15342 Athens, Greece
FDepartment of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USA

(Received 25 November 2004, in final form 3 January 2005)

This paper is the sixth part in a series of manuscripts on ‘OPEN PROBLEMS AND
CONIJECTURES’ dealing with third-order rational difference equations of the form
a+ Bx, + yxn—1 + x>
A+ Bx, + Cx,—1 + Dx,—»
with nonnegative parameters and nonnegative initial conditions such thata« + 8+ y+ 6 > 0
and the denominator is always positive. See [4,9,11,20,29] for the preceeding parts.

In this paper, we address the boundedness character of each of the 225 special cases which
are contained in equation (1) and in each case we either state a reference where the equation
was investigated, establish our assertion, or offer a conjecture. The amazing thing is the
simplicity and generality of the rules which characterize the boundedness behaviour of so
many equations with so much diversity.

In the sequel we will use the notation which was introduced in [29], see also Appendix I(c)
in [20]. In some cases, we will write the equation in normalized form with as few parameters
as possible.

To start with, we conjecture that out of the 225 special cases which are contained
in equation (1), 135 special cases involve equations with the property that every solution of
the equation is bounded. For each of the remaining 90 special cases, there is some range of

Xn1 = ) n:O717"' (1)
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the parameters in which the equation has only bounded solutions, and in the complement of
that range there exist both bounded and unbounded solutions.

The table in Appendix I summarizes the facts and our conjectures on the boundedness of
each of the 225 special cases of equation (1). This appendix is based on a thorough analysis
of the existing literature, on numerous computer observations and on many analytic
investigations including the three new theorems, namely, Theorems 2, 3 and 4, which we
present here. A glance at any special case will immediately reveal whether the equation has
unbounded solutions in some range of its parameters. At a glance we will also know whether
the boundedness character of the equation is an established result or still a conjecture.

1. Some straightforward cases

Clearly, all 14 special cases of equation (1) which are linear but nontrivial have unbounded
solutions in some range of their parameters. They are the following equations:

#5,  #9, #13, #41, #45, #49, #53,
#57, #61, #117, #121, #125, #129, #137.

See also the table in Appendix 1.
Also, all 4 trivial and linear cases of equation (1) have only bounded solutions. They are
the following equations:

#1, #6, #11, #16.

See also the table in Appendix I.

All 15 Riccati or Riccati-type special cases of equation (1) have only bounded solutions
because their Riccati number is less than or equal to 1/4, or because every solution of the
equation is periodic. See [28], p.17. They are the following equations:

. #3, #4, #17, #18, #19, #23, #30,
#37, #42, #47, #52, #65, #72, #79.
See also the table in Appendix I.

One can see that every special case of equation (1) for which all of the terms in the
numerator are also contained in the denominator has only bounded solutions. By this we
mean that if the constant « is present in the numerator of this special case, so is the constant A
in the denominator. If the coefficient 8 of x,, is present in the numerator, so is the coefficient B

of x,, in the denominator, and so on. This idea establishes the boundedness in the following 51
additional equations:

#26, #27, #32, #34, #39, #40, #86, #93,
#100, #101, #102, #103, #105, #106, #108, #109,
#111, #112, #114, #115, #116, #133, #134, #135,
#136, #141, #142, #145, #147, #150, #151, #156,
#158, #1060, #163, #164, #189, #190, #191, #192,
#193, #194, #201, #206, #211, #216, #217, #218,
#219, #220, #225.
See also the table in Appendix I.
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2. Second order rational difference equations

The global behaviour of solutions of the second order rational difference equation

Sl ek B ST @)

Tl = A Bx, + Cx,—1’

was investigated in [28]. Equation (2) contains 49 special cases. The boundedness character
of 47 of these cases can be inferred from the work in [28]. The boundedness character of the
remaining two cases, namely,

#166, #168

was determined in [25], where it was shown that every solution of each of these two
equations is bounded. See also the table in Appendix I. The following theorem describes the
boundedness character of solutions of all nontrivial special cases of equation (2).

THEOREM 1 (See [4,25,28])
(a) Assume that

Cc>0.

Then every solution of equation (2) is bounded.
(b) Assume that

C=0 and B> 0. 3)
Then every solution of equation (2) is bounded if and only if
v=B+A.

Equivalently, when equation (3) holds, equation (2) has unbounded solutions if and
only if
v> B+A.

3. Equations with bounded solutions only

The following theorem establishes the boundedness of all solutions in 12 new special cases,
namely

#76, #81, #82, #144, #148, #152,
#175, #182, #204, #208, #212, #224.

See also the table in Appendix I. The proof is along the lines of Lemma 2 in [25] and will
be omitted.

THEOREM 2  The following statements are true.

(a) Assume that
a,B,6 €[0,0) and B,D € (0,).
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Then every solution of the equation

o + an + 8xn—2

, n=0,1,...
BX,1+DX,172

Xn+1 =
is bounded.
(b) Assume that
a,y,6 € [0,0) and C,D € (0,).
Then every solution of the equation

a+ YXn—1 + 8xn72
C-xn—l + Dxn—Z

Xpt] = , n=0,1,...

is bounded.
(c) Assume that

a,B,v,6 €10,00) and B,C,D &€ (0,).

Then every solution of the equation

o+ Bxy + YXn—1 + 0%y
Xpp1 = , n=0,1,...
an + an—l + Dxn—2

is bounded.

Are there other special cases left with the property that every solution of the equation is
bounded? We conjecture that the answer is “YES” and that they are the following 31 special
cases:

#58, #63, #77, #78, #88, #89, #90, #91,
#04,  #96, #122, #127, #131, #139, #143, #155,
#159, #170, #171, #172, #173, #176, #178, #184,
#188, #196, #200, #203, #207, #215, #223.

See also the table in Appendix 1.

Open Problem 1  For each of the 31 equations in the above list, determine the boundedness
character of the equation and investigate the global stability of its equilibrium point(s).

Open Problem 2  Extend and generalize Theorem 2.

4. Equations with unbounded solutions

First we present a conjecture about a quite general equation which possesses unbounded
solutions in some range of its parameters.

CONIJECTURE 1 Assume that

Y, B+D € (0,00) and «,pB,8,A,B,D € [0, ). “)
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Then the rational equation

n n— 8}17
_ o B ROy (5)
A + Bx, + Dx,—»

Xn+1

has unbounded solutions in some range of its parameters and in particular when
v>B+0o+A. (6)
This conjecture has already been confirmed in each of the following cases:

(i) D=0; See [10,28] or Appendix IL
(i) B=B =0; See [12] or Appendix IL
(iii)) B=06=0; See [13] or Appendix IL
(iv) #87; See [17].

(v) #99; See [6].
(vi) #162; See [7].

The following theorem confirms Conjecture 1 when the parameters B and D are both
positive. The proof, which is similar to the proof given in [10] for the case D = 0, but more
tedious, will be given elsewhere.

THEOREM 3 Assume that

. B,8.A €[0,0) and y.B,D E (0,).

Then equation (5) has unbounded solutions in some range of its parameters and in particular
when equation (6) holds.

Conjecture 1 pertains to the following 48 special cases of equation (1):

#10,  #12,  #29, #31, #33, #46, #48,  #54,
#56°,  #62,  #64, #71, #73, #75, #83,  #85°
#87,  #95,  #97, #99, #110, #118, #120%, #126,
#128, #130, #132%, #138, #140%, #146, #154, #162,
#165, #167°, #169, #177, #179, #I81, #183, #185",
#187, #195, #197°, #199, #202, #210, #214, #222.

The conjecture has already been confirmed for the 40 equations without an asterisk. The eight
cases with asterisks still remain to be confirmed or refuted. See also the table in Appendix 1.

Open Problem 3 For each of the eight equations with an asterisk in the above list,
determine the region of parameters where every solution of the equation is bounded.
Furthermore, investigate the boundedness character of solutions of equation (5) when

y=B+05+A.
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Open Problem 4  Extend and generalize Theorem 3.

The following result establishes the existence of unbounded solutions for equation (1)
when D = 0 and 6, B, and C are positive. Without loss of generality we assume that C = 1.

THEOREM 4 Assume that
6,B € (0,00) and «,B,vy,A € [0,). (N
Then the rational equation

a+ Bx, + yx—1 + 8,2
n+1 = s 20,17... 8
ntl A+ Bx, + x,—1 " ®)

has unbounded solutions in some range of its parameters and in particular, when

8>A+yB+§.

Proof Choose positive numbers m and € such that

_Aa_p_PB m
mE(O,S A— B B> and EE(O,I+B>.
Set
1 B
Kz—{a—l-ﬁ(e—i-—) +5(e+7)}
€ B
and

1
L=£[a+‘y(e+y)+6(e+§)}

Let {x,} be a solution of equation (8) with initial conditions chosen as follows:
x_p > max{K,L},x_| € <0,e +§>’ and xp € (0,e + ).
Then we claim that

lim x3,41 =00, limxs,0 ==, and limxz,43 =7.
n—oo n—oo B n—oo

Indeed,
. _a+Bx0+yx,1+8x,2> a—+ Bxg + yx— " dx—»
: A+ Bxo +x_ A+yB+E+e(1+B) A+yB+E+e(1+B)
o+ Bxo+ yx— 0
> B X-2,
0 A+yB+5+m
. _a—i—Bxl—i-yxo—i—b‘xfl<a~|—7(8+’y)+8(8+§)~|—3x1
2 A+ Bx; + xg Bx,
8(e+8) +BL
<a+y(e+y)+ (E+B)+,8 =3+E,

BL B
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and
_a+ Bxy+ yx + 8 - a—i—,B(e—}-g) + &(e + y) + yx
A+ Bx; + x; X1

<a+3(e+§)+6(e+y)+yk_
= -

A3

€+ vy

It follows by induction that for n = 0,

a+.8x3n + YX30-1 o
8 A+yB+E5+m
B

X3p—2 < 6+E’

X3n1 = X3p-2,

and
X343 < € + .

Therefore
lim x3,,41 = oo,
n—oo

a X3n X3n—1
X3n+1 + B + FyX}nﬁ»] + 6x3n+1 B
Xant2 = A gy g T

X3n+1 X3n+1

and

a +BM+’Y+3&

X3n+1 X3n+1 A3nt1

X3n+3 = A + B a2 +1

X3n+1 X3n+1

— 7y as n—

and the proof is complete. ]

Theorem 4 establishes the existence of unbounded solutions for each of the following
16 equations:

#38,  #80, #92, #98, #113, #149, #157, #161,
#174, #180, #186, #198, #205, #200, #213, #221.

For two of the above equations, namely #38 and #113, the existence of unbounded
solutions is also a consequence of the period-3 trichotomy known for third-order equations.
See Appendix III and [9]. See also the table in Appendix I.

Open Problem 5 Assume that equation (7) holds. Determine the boundedness character of
solutions of equation (8) when

5SA+)/B+§

and determine the global stability of its equilibrium point(s).
Open Problem 6 Extend and generalize Theorem 4.

In addition to the period-two trichotomies which are known for some special cases of
equation (1) and which we have listed in Appendix II, equation (1) is known or conjectured to
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have a period-k trichotomy for each k € {3,4,5,6}. These four trichotomies that we have
listed in appendix III reveal the last group of new special cases of equation (1) which possess
unbounded solutions in some range of their parameters. These are the following 12 equations:

#8,  #14, #15, #28°, #35, #36,
B4 #50, #51, #59%, #70%, #123*

The boundedness character of the five equations with an asterisk has not yet been established.
See also the table in Appendix I.

Open Problem T  For each of the five equations with an asterisk in the above list, determine
the region of parameters where every solution of the equation is bounded.

Note that there are also some thought provoking conjectures stated in the Appendices.
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Appendix I

This appendix, which summarizes the boundedness character of solutions of each
of the 225 special cases of equation (1), is based on a thorough analysis of the existing
literature, on numerous computer observations, and on many analytic investigations
including the three new theorems, namely Theorem 2, Theorem 3, and Theorem 4, which are
presented here.

A glance at any special case will immediately reveal whether the equation has unbounded
solutions in some range of its parameters. At a glance we will also know whether the
boundedness character of the equation is an established result or still a conjecture.

A bold faced B next to an equation in the table indicates that it is known that every solution
of that equation is bounded. Next to the B we will also present a reference where the
boundedness of the equation was established, unless the equation is of some simple form and
the boundedness of all solutions is straightforward. For example, linear, Riccati, an equation
where all corresponding terms of the numerator are also present in the denominator, etc.
Similarly we print a bold faced U if it is known that the equation has unbounded solutions in
some region of its parameters. Again we will also present a reference for all cases which are
not straightforward.

A bold faced B* next to an equation indicates that we only conjecture that every solution of
the equation is bounded. Similarly, a bold faced U™ next to an equation indicates that we only
conjecture that the equation has unbounded solutions in some range of its parameters.

Note that there are 31 equations in the table with a B* next to them and 13 equations with a
U™. That is, there are 44 special cases of equation (1) out of the 225 possible cases for which
our conjecture about their boundedness remains to be confirmed or refuted (Table 1).

Appendix II

In this appendix, we present some known boundedness results for equation (1) when C = 0
and in particular all known period-two trichotomies for equation (1).



Downloaded by [Nat and Kapodistran University of Athens] at 13:18 28 February 2016

768

Table 1.
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Table of the boundedness character of the 225 equations.

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10
#11
#12
#13
#14
#15
#16
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26
#27
#28
#29
#30
#31
#32
#33
#34
#35
#36
#37
#38
#39
#40
#41
#42
#43
#44
#45
#46
#47
#48

xﬂ+l:%7 n=

Xn+1

=_a_
Cxu—1?

0,1,...

n=0,1,...
n=0,1,...

* n=0,1,...

Yrn—1 —

yl n=0,1,...
Y —

ok n—O,l,...

=Yl =1,

Dx,—» 7

5
AXn—2,

n=0,1,...

o p=0,1
Lt I

Bx,

2 p=0,1,...

Cxy-1?
D

—a_
A+Bx,?

=-__ &
A+Cxy—y ?

— a
A+Dx, 5’

— a
Cxp—1+Dx,—2

T Cxy 1 +Dx, 20

_a
Bx,+Cxy—1

—_a
Bx,+Dx, >

Bx,+Cx,—1

X
Bx,+Dx,—»
By

YXn—1
A+Bx, ’
YXn—1

T A+Cx,—?

YXn—1

T A+Dx,2

= Bx,+Cx,—’

= Bxy+Dx,2

YXn—1

PXn—1

YXn—1

Cxp—1+Dx,—2

Oy

= A+Bx,’

Sy

T A+Cx,y?

T Cxy1+Dx, 2 ?

Oy—p
A+Dx, 5 °
Xy

Bx,+Cx,—1

Oxy—2

Bx,+Dx,— ’

Xp—2
a+pBx,
A

a+PBx,
Bx,
a+Px,
Cxp—y
a+Bx,
Dxy— ?
QY-
A bl

a+yx,—1
Bx, 7’
At Y1
Cxpr 7

P e A e |

Dxp— 7

S n=0,1,...

n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...
, n=0,1,...

n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...
, n=0,1,...

n=0,1,...

n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...

n=0,1,...

n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...

n=0,1,...

n=0,1,...

n=0,1,...

n=0,1,...

=

cw oo wOoRwWOowodow oW OO R IR IR IR Ccaocarcaccw"wacw® =

*

*

([28] or Theorem 1)

([28], or [30], or Theorem 1)
([16,19])

([19] or [30])

([28] or Theorem 1)

[27]

([28] or Theorem 1)

([22], or [28], or Theorem 1)
(1,21

(13D

(Appendix III)
(Appendix III)

(Appendix III, or [9], or Theorem 4)

([27], or [28], or Theorem 1)

([22], or [28], or Theorem 1)

(13D
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#64
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#66
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#69
#70
#71
#72
#73
#74
#75
#76
#77
#78
#79
#30
#81
#32
#83
#34
#385
#36
#87
#88
#89
#90
#91
#92
#93
#94
#95
#96
#97
#98
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xn+l:%7 n:0717"'

Xt :7’“8‘?":"’”2, n=0,1,...

Xnt1 :ﬂz)?:xl—z’ n:O,l,...

xn+1=7“gjszz, n=0,1,...

Xt =—Bx”+AW""7 n=0,1,...
Xt :—Bx,;vv:‘,,—x7 n=0,1,...
x,z_*_l:%, n=0,1,...
-er»l:%v nzo‘,la---
-er»l:%v n:O717"~
X1 =BX”;€;"”Z n=0,1,...
Xpt1 =B"%fj;’”, n=0,1,...
x,H_l:%, n=01,...
x,,H:””"f*'SXH, n=0,1,...
xn+1:‘m137;:3x”27 n:()»lv"'
Tpgy = g2 0 =0,1,...
Xppy = 2oER =0

=By =01,

Xn+1 A+Bx, >

Xntl = Agcx,

Xnt1 = A+Dx, 5’

Xntl = e

Bx,+Cx, - ?
Xn+1 =B):I—g::,2~ n=0717
Xn+1 :#%7 Vl:(),l
x,l+1:'1:+—71§;‘, n=0,1,...
xn+1::++g%7 n:Oal‘,---
Xn+1 ::153127 nzovla"'
Xnpl = el n=0,1,...
Xop) = g n=0,1,...
-xn-HZ%, n=0,1
xn+1:%é’;2a n:()‘,la---
Xntl :/ﬁg?,‘,j’ n=0,1,...
xn+1=$7 n=0,1,...
Xt =Bi‘+fé’gzl, n=0,1,...
Xn+1:%7 n=0,1,...
xn-HZ%, n=0,1,...
x11+1:%a n:O,l,...
xn+1=%ﬁ, n=0,1,...
Xt =€:+sz?7 n=0,1,...
x,H.l:%, n=0,1,...
xn+1=%, n=0,1,...
xn+1:%7 n=0,1,...
xn+1:lax/;iigz:27 n:O717"~
X1 =7€ﬁ$‘i‘(j’f7 n=0,1,...
Xp+1 =—€ﬁ;)i?j7 n=0,1,...
x,z_,_l:%, n=01,...
Xn+1 :52'__:18)2:;227 l’l:(),l,...
X = et n=0,1,...
X = Yo n=0,1,
X = Bgdde2 =01,
Xppt = Vg = 0,1,
gt =B =01,

#*

#

*

#

#

*

#

*

*

*

C R R R I R R AT CRAIRATI R R I ORI CATI IR I ARACER I AR A CR O G C

(RI))
3D

([28] or Theorem 1)
([28] or Theorem 1)

(can be transformed to #67)

([10], or [14], or Appendix II)

(12]

([27], or [28], or Theorem 1)

(1271)

([28] or Theorem 1)
([31] or Theorem 2)
(Appendix III)

([22], or [28], or Theorem 1)

([1,13])
([28] or Theorem 1)

(13D
([18] or Theorem 2)

(Theorem 4)
([15] or Theorem 2)
([21] or Theorem 2)

(28D
([28] or Theorem 1)

([17] or Theorem 3)

(Theorem 4)

({101

([12,24])
(Theorem 4)
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#99

#100
#101
#102
#103
#104
#105
#106
#107
#108
#109
#110
#111
#112
#113
#114
#115
#116
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#118
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#122
#123
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#125
#126
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#129
#130
#131
#132
#133
#134
#135
#136
#137
#138
#139
#140
#141
#142
#143
#144
#145
#146
#147
#148

Kn+1

Xn+1

Xn+1 =

Xn+1
Xn+1
Xn+1
Xnt1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Kn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xnt1
Xn+1
Xn+1

Xn+1

Xnt+1 =

Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xnt1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1

Xn+1
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7%7 n:0717..-
%, n=0,1,...
Tt =01
Tt P 0L

:m7 n=07]7...

=g 1= 00
B =06
AEiDns 1=0L.

=arcn e =06

= Ao ons 1=01..
G P01
B by 1 0L
=mac ey =00
mEy e 1=01
W7 n=0,1,...

:m7 n=0,1,...

= mrcona 1= 01

_%7 n=0,1,...
:%:WH? n=0717.‘.
_%7 n=07],...
%ﬁz’xﬁl’ n:O,l,...
%7 n:O,l,...
_%;:SXH’ n=0,1,...
% n=0,1,...
_%7 n=0717...
_%7 n=071,...
_WMIE%TSM’ n=0,1,...
_W%;%fm’ n=0,1,...
W’ n=0,1,...
:W‘P‘;;l’:ﬂs"nﬂ7 n=0717...
:wacvx—ﬁa»z n=0,1,...
= Bt 20
=imae e =00
= e e =00
=it s =0

2 n=0,1,

= AFBr,+Ctr1 +D%p 2

— a+ﬁxn+721—1+5)‘n—z n=0.1

) 5Ly

_ atBrtyx— 1 +6x, o _
= T a1 T2 ni()l

Bx,
__ atBx,tyx 1 +0x, 2 _
SRR 1T 2 niol

Xn—1
w7 n=0,1,

Dx,—>
a+pBx,

= AFBr,+Cry

= A¥Cu 1 +D%, 5

= By +Cx, 1 +Dxp

Xn+1 =

Xn+1
Xn+1

Xn+1

= A+Cx_ 14D,

= Bu4Co+Dx,2

ot B,
A+Bx,+Dx, >
a+Bx,

a+Bx,

atyx, -1
A+Bx,+Cx, 1
Y,
A+Bx,+Dx, >
At YXn—1

atyxn-1

n=0,1,...
n=0,1,...
n=0,1,...
= n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...
n=20,1,...

*

*

*

*

*

Py

*

EFE O R WO R R R R oRccocoRcocoRcorRccowc R coR@RRRRIISS®SR

([6] or Theorem 3)

([19,30])

(27D

([13] or Theorem 3)

(Appendix II1, or [9], or Theorem 4)

([28] or Theorem 1)
([28] or Theorem 1)

(Can be transformed to #67)

([2,10])

(12D

(10D

(10D

(Theorem 2)

([13] or Theorem 3)

(Theorem 2)
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#149 Xotl = e, n=0,1,... U (Theorem 4)
#150 Yot = g —, n=0,1,... B

#151 Yol = e n=0,1,... B

#152 Yot = prrertid—, n=0,1,... B (Theorem 2)
#153 Yot = ot n=0,1,... B

#154 Xupt = gt Bl n=0,1,... U (Theorem 3)
#155 Xupt = et B n=0,1,... B*

#156 Xop1 = g e n=0,1,... B

#157 Xupt = gt p=0,1,... U (Theorem 4)
#158 Xupt = glpt o n=0,1,... B

#159 Xopt = et n=0,1,... B*

#160 Xopt = et n=0,1,... B

#161 Xopt = el n=0,1,.. U (Theorem 4)
#162 Xpp1 = %7 n=0,1,... U ([7] or Theorem 3)
#163 Xpgt = gl =0,1,... B

#164 Xppt = sl n=0,1,... B

#165 Xnt1 = %}'K"", n=0,1,... U ([23], or [28], or Theorem 1)
#166 Xpyy = SRl = 0,1, B ([25] or Theorem 1)
#167 Xpyy = SR = 0,1, u*

#168 Xpp1 = % n=0,1,... B ([25] or Theorem 1)
#169 Xy = GRS = 0,1, U (Theorem 3)
#170 Xppt = Gl = 0,1, B"

#171 R T Ll B B*

#172 Xppp = Putdn oy — 0,1, B*

#173 Xppy = SIS =01, B*

#174 Xpgy =GP =01, U (Theorem 4)
#175 Xpgy = SgPudius =01, B (Theorem 2)
#176 Xpgy = gt p =01, B*

#177 Xpyy = 2 = 0,1, U GO

#178 gy = SRR =0, B*

#179 Xpgy = S =0, U GW))

#180 Xpgy = SRR = 0,1, U (Theorem 4)
#181 gy = S = 0,1, U (Theorem 3)
#182 R e e US B (Theorem 2)
#183 Xyyy = Bt oy U GO

#184 gy = Bt oy B*

#185 gy = Bt =01 uU”

#186 gy = Bug 30 =0 U (Theorem 4)
#187 X1 = %, n=0,1,... U (Theorem 3)
#188 gy = Bt oy — 0 B*

#189 Xt = et s, n=0,1,... B

#190 x,,+]:f%, n=0,1,... B

#191 Xt = et n=0,1,... B

#192 Xust = e ets—, n=0,1,... B

#193 Xntt = rpaaity—, n=0,1,... B

#194 Xt = gt — n=0,1,... B

#195 gy = SRV — 0, U (101

#196 Xpyy = SR =0, B"

#197 gy = BRI = 0,1, U*

#198 Koy = Butwo O ] U (Theorem 4)

Bx,+Cx,—|
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#199
#200
#201
#202
#203
#204
#205
#2006
#207
#208
#209
#210
#211
#212
#213
#214
#215
#216
#217
#218
#219
#220
#221
#222
#223
#224
#225

Xn+1

Xn+1

Xn+1

Xnt1 =

Xnt+1 =
— otPx,+0x, o
A+Bx,+Cxy—1

Xn+1
Xn+1

Xn+1

Xn+1 =

Xn+1

Xnt+1 =
— a4+

Xn+1
Xn+1
Xn+1
Xn+1
Xn+1
Xn+1

Xn+1

Xnt+1 =

Xnt1

Xn+1

Xn+1
Xn+1
Xn+1

Xn+1

— QB+ Y1+
s
— QB+ Y1 +0x

Xl = a1

= A+Bx,+Dx, >’

— Bratyn—1+0%,-9

— BN+ 1+

— 0By 1 8%
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Bx,+Dx, -2

Cxy—1+Dxy—2 ’
n=0,1,...
n=0,1,...

A+Bx,+Cx,—1
B+
A+Bx,+Dx, >’
o+ By +YXn—1
A+Cxy—1+Dx, 2 7

Bx,+Cx,—1+Dx,—2 *

atBrx, 6%,

a+Bx,+8x,—2
A+Cxy—1+Dxp—?

a4, +0x,—»
Bx,+Cxy—1+Dx,—2 7
by, 8% o
A+Bx,+Cx,_y
a1+, 2
A+Bx,+Dx,—, °
A+Cxy—+Dx, 27
atyx,— 1+,
Bx,+Cxy—1+Dx, >’

A+Bx,+Cx,—

— Brutyxn-1+0x-2 , n=0,1,

A+Bx,+Dx,—>

Bt yxn—148%, 2

A+Cxp—1+Dxy— ?

Bt yxn—1+8x-2

Bx,+Cx,—1+Dx, > ?
at B+ -1

A+Bx,+Cxy—+Dx, 2 ?
at B, +0x,—>

A+Bx,+Cxy—+Dx, 2’
atyx,—1+0x,-2

= AFBx,+Cx +Dx, 2 =Y

By +yxn—14+8%, 2

~ A+Bx,+Cx,—1+Dx, >’ ’
— QB+ Y1+
Xnt+1 =

A+Bx,+Cx,—  *
B, + X1 0%,
A+Bx,+Dx,>

— oLty 1+ n=0,1,...

A+Cxy—1+Dxy—n
Bx,+Cx,—1+Dx,— ’

A+Bx,+Cxy—1+Dx,—2 7 ’

n=0,1,...
n=0,1,...

n=0,1,...
a+Bxn+Yxn—1 n=0,1,...

n=0,1,...
n=0,1,...
n=0,1,...
n=0,1,...

EFER oo EwEwwERERwR R ccoRr R R oRwawwc

=

*

*

*

*

*

(Theorem 3)

(Theorem 3)

(Theorem 2)
(Theorem 4)

(Theorem 2)
(Theorem 4)
(Theorem 3)

(Theorem 2)

(Theorem 4)
(Theorem 3)

(Theorem 4)
(Theorem 3)

(Theorem 2)

There exist 104 special cases of equation (1) that we know have only bounded solutions and 31 that we conjecture have only bounded
solutions.
There exist 77 special cases of equation (1) that we know have unbounded solutions and 13 special cases that we conjecture have

unbounded solutions.

If we confirm our conjectures there will be 135 special cases of equation (1) with only bounded solutions and 90 special cases that

possess unbounded solutions.

The following period-two trichotomy results have recently been established for the
following rational equations with nonnegative parameters and nonnegative initial conditions:

THEOREM A (See [22,23,28])

equation (10):

o+ B, + Yo

Xn+1 = A+x ) 071,“-
n
X :a+7xn—l+8xn—2 0.1
n+1 A+xn72 5 s Ly
+ _
Xp+1 = ATl n=0,1,...

A+ an + Xn—2 ,

The following period-two trichotomy result holds for

(a) Ewvery solution of equation (10) has a finite limit if and only if

y< B+A.
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(b) Ewvery solution of equation (10) converges to a (not necessarily prime) period-two
solution of equation (10) if and only if
v=B+A.

(¢c) Equation (10) has unbounded solutions if and only if
v> B+A.
THEOREM B (See [1,12,24]) Assume that
y+6+A>0.
Then the following period-two trichotomy result holds for equation (11):
(a) Ewvery solution of equation (11) has a finite limit if and only if
y<o+A.

(b) Ewvery solution of equation (11) converges to a (not necessarily prime) period-two
solution of equation (11) if and only if
y=086+A.
(¢c) Equation (11) has unbounded solutions if and only if
v> 06+ A.

THEOREM C (See [13]) Assume that
vy+A+B>0.

Then the following period-two trichotomy result holds for equation (12):

(a) Every solution of equation (12) has a finite limit if and only if
v < A.
(b) Every solution of equation (12) converges to a (not necessarily prime) period-two
solution of equation (12) if and only if
y=A.
(¢c) Equation (12) has unbounded solutions if and only if
vy > A.

When, in addition to C = 0, we also assume that D = 0, the following general result was
established in [10] for the rational equation
o+ an + YXn—1 + 6xn*Z

il = , =0,1,... 13
Xn+1 A+x, n (13)

with nonnegative parameters and nonnegative initial conditions.

THEOREM D (See [10])
(a) Assume that

y>B+0o+A.
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Then equation (13) has unbounded solutions. More precisely, let k be any number such that
0<k<y—B—-6—-A

Then every solution of equation (13) with initial conditions x_,, x—1, Xy such that

x%memﬂ—m(mmﬂ>i:f
is unbounded and in fact
nanolo Xopt1 = 0 and ,}1_{{)10 Xo, = %%214
(b) Assume that
y=B+6+A and B+A>0. (14)

Then every solution of equation (13) converges to a (not necessarily prime) period-two
solution and in particular all solutions of equation (13) are bounded.
Without the assumption that

B+A>0
in equation (13), it may not be true that every solution of equation (13) is bounded when
y=B+0+a

See equations (2,14).
Equation (13) does not have a trichotomy character in the spirit of Theorem A for
equation (10). Actually it is not true that when

Y<B+A (15)

holds, every solution of equation (13) has a finite limit. This is true when 6 = 0, but when
6>0,

Yy<B+6+A (16)

is not sufficient even for the local asymptotic stability of the equilibrium point of equation
(13). However, we conjecture that when equation (16) holds every solution of equation (13)
is bounded.

Appendix III

In this appendix, we present all special cases of equation (1) with period-3, period-4, period-5
and period-6 trichotomies which are known to us.

Period-3 Trichotomy (See [9,26])

THEOREM E  Assume that

A,B,C €[0,00) with B+ C > 0.
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Then the following period-3 trichotomy result is true for the rational equation

Xn—2

—— n=0,1,.... (17)
A+ Bx, + Cx,,—

Xn+1 =

(a) Ewvery solution of equation (17) converges to 0 if and only if

A>1.
(b) Ewvery solution of equation (17) converges to a period-3 solution of the form

..0,0,0,...
with ¢ = 0 if and only if

A=1.
(¢) Equation (17) has unbounded solutions if and only if

A<I1.

Note that the boundedness character of the equations

#14, #15, #35, #36, #38, #113

is covered by the period-3 trichotomy. See also the table in Appendix L

Period-4 Trichotomy (See [8])

CONJECTURE 2 Assume that
a, B € [0, ).
then the following period-4 trichotomy result is true for the rational equation

xnﬂzm’ n=01,... (18)
Xn—1
(a) Every solution of equation (18) converges to its positive equilibrium if and only if

B> 1.

(b) Ewvery solution of equation (18) converges to a period-4 solution of equation (18)
if and only if

B=1.
(¢c) Equation (18) has unbounded solutions if and only if
B<1.

Note that the boundedness character of the equations

#51, #59*, #123"
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is covered by the period-4 trichotomy. The boundedness character of each of the
two equations with an asterisk above has not yet been established. See also the table in
Appendix L.

Period-5 Trichotomy (See [5,8])
Assume that
a=0.

Then the following period-5 trichotomy result is partially established and still partially a
conjecture (as stated) for the rational equation

oy =22 oy (19)
xﬂ
(a) (Conjecture) Assume that
a> 1.

then every solution of the equation converges to its positive equilibrium point.
(b) Assume that

a=1.

Then every solution of equation (19) converges to a period-5 solution of equation (19).
(c) Assume that

a <.

then equation (19) has unbounded solutions.

Note that the boundedness character of the equations

#14, #50

is covered by the period-5 trichotomy. See also the table in Appendix L.

Period-6 Trichotomy (See [8])

CONJECTURE 2 Assume that
a,C € [0, ).
Then the following period-6 trichotomy result is true for the rational equation

o+ x,
= =01, 20
et an*l + Xp—2 " ( )

(a) Ewvery solution of equation (20) converges to its positive equilibrium if and only if

aC? > 1.
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(b) Ewvery solution of equation (20) converges to a period-6 solution of equation (11)
if and only if
aC? =1.

(¢c) Equation (20) has unbounded solutions if and only if
aC? < 1.

Note that the boundedness character of the equations

#28, #44, #70

is covered by the period-6 trichotomy conjecture. The boundedness character of each of the
three equations above has not been established yet. See also the table in Appendix 1.



