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We investigate the boundedness character of non-negative solutions of a rational
system in the plane. The system contains 10 parameters with non-negative real values
and consists of 343 special cases, each with positive parameters. In 342 out of the 343
special cases, we establish easily verifiable necessary and sufficient conditions,
explicitly stated in terms of 10 parameters, which determine the boundedness character
of solutions of the system. In the remaining special case, we conjecture the
boundedness character of solutions. It is interesting to note that this special case can be
transformed to the well-known May’s Host-Parasitoid model.

Keywords: boundedness; global stability; patterns of boundedness; rational equations;
rational systems
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1. Introduction

We establish the boundedness character of solutions of the rational system in the plane,
len
A1 + len + Cl)’n

a + Ban + Y2Yn ’
Ay + Box, + Coy,

Xn+1 =

n=0,1, ... (1.1)

Yn+1 =

with non-negative parameters and arbitrary non-negative initial conditions such that the
denominators are always positive and such that

Al +B +ay+ B+ C, > 0. (1.2)
System (1.1) contains

IX2—1)x @2 = 1)x 2> —1) =343,

special cases of systems, each with positive parameters. In one special case, all the
parameters of the system are positive. In the remaining 342 special cases, at least one of
the 10 parameters of System (1.1) is allowed to be zero.
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In Appendix 1, we define the following four possible boundedness characterizations:
(B,B), (B,U), (U,B), and (U,U).

When each special case, within a group of special cases of System (1.1), has the
boundedness characterization (B, B) (respectively, (B, U), (U, B), and (U, U)), then we
will say that System (1.1), restricted to this group of special cases, has the boundedness
characterization (B, B) (respectively, (B, U), (U, B), and (U, U)).

We establish easily verifiable necessary and sufficient conditions, explicitly stated in
terms of the 10 parameters, under which the boundedness characterization of the system is:
(B, B), (B, U), (U, B), or (U, U).

The boundedness character of solutions of a system is one of the main ingredients in
understanding the global behaviour of the system including its global stability.
Boundedness is also essential in the study of most applications. Actually, some special
cases of System (1.1) arise in applications. For example, each of the following two systems
of rational difference equations

Xn
Xn+1 = —

Yn . n=0,1,... (1.3)
Y+l = 02 + X,

and

xil

Aty Y n=0,1,... (1.4)
Ynt+1 = Xn

Xpn+1 =

is reducible to the so-called Pielou’s equation, that is, the equation

B

e =0,1,...
1+xn717 ) )

Xn+l =
with B € (0, ) (see [8,9,13,14,19,20]).
The system of rational difference equations

Bixy
A] + len + Clyn
Y2Yn ’
A2 + Bzxn + Czyn

Xn+1 =
n=01,... (1.5)

Ynt+1 =

was studied in [12], as a discrete competition model for the populations x,, and y,. See also
[7,10,15] and the references cited therein.
Also, the system

Xn+1 = —
y”

1 1 )
Yntl = —Xn + —Vn
o o

n=0,1,..., (1.6)
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with a € (0, o), through the change of variables,

14+Y,
w=Yn d n = 5 1.7
X and y X, (L.7)
becomes
x _aXy,
n+1 _1+Yn
Xy , n=0,1,..., (1.8)
Yn — ntn
T yy,

which is the well-known May’s Host-Parasitoid Model (see [16—18]).

System (1.6) is the only special case among the 343 special cases of System (1.1)
whose boundedness characterization has not been established yet. For this case, we offer
the following conjecture.

CONJECTURE 1.1. For every positive solution {x,, y,} of System (1.6), the component {x,,}
is bounded for all positive values of the parameters, and in some range of the parameters
and for some initial conditions, the component {y,} is unbounded.

System (1.1) is a special case of the ‘full’ rational system in the plane,

_ o1+ BiXa + ¥1Yn

A; 4+ Bix, + Ciy,
ar + Boxy + yayn (°
Ay + Box, + Coy,

Xn+1

n=0,1,..., (1.9)

Yn+1 =

which contains
TXTXTXT=2401

special cases each with positive parameters. A large number of open problems and
conjectures about System (1.9) were posed in [7,10]. For some work on the boundedness
character of System (1.9), see [1-6,10—11]. For the numbering system of the 2401 special
cases contained in System (1.9), see Appendices 1 and 2 in [7].

Throughout this paper, we assume that (1.2) holds and we present necessary and
sufficient conditions under which System (1.1) has the boundedness characterization
(B, B), (B, U), (U, B), or (U, U).

When Condition (1.2) is satisfied, System (1.1) contains exactly 342 special cases of
systems each with positive parameters. This is because when

Al+B i+ +B,+C, =0,

System (1.1) reduces to the single special case (1.6).
First, we present the boundedness patterns of System (1.1) when

Bl:O,
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that is, for the system

X =ﬂ
n+1 A] +C1yn

_a2+B2xn+'}/2yn ! n_o’]""' (]10)
Ynt+1 =

A2 + Bzx,, + Czyn

System (1.10) has the boundedness characterization (B, B), if and only if:
B,=0, C,B,€(0,0), and (=0 or C,>0). (1.11)

Under Condition (1.11), System (1.10), according to the numbering system in [7], consists
of the following 20 special cases:

6,7), (6,8), (6,16), (6,22), (6,23),
(6,26), (6,31), (6,34), (6,41), (6,46),
14,7), (14,8), (14,16), (14,22), (14,23),
(14,26), (14,31), (14,34), (14,41), (14,46)

(1.12)

System (1.10), restricted to the group of special cases (1.12), has the boundedness
characterization (B, B). See also Appendix 1.
System (1.10) has the boundedness characterization (B, U), if and only if:

By =C,;=0 and Cy,pB2, v € (0,). (1.13)
System (1.10) has the boundedness characterization (U, B), if and only if:
B=0 or B,>0), (yop=0 or C,>0), and A, +C, > 0. (1.14)

When none of the above three conditions (1.11), (1.13), and (1.14) is satisfied, System
(1.10) has the boundedness characterization (U, U).

One can see that System (1.10) contains 146 special cases of which 20 special cases
have the boundedness characterization (B, B), 3 special cases have the boundedness
characterization (B, U), 75 special cases have the boundedness characterization (U, B),
and 48 special cases have the boundedness characterization (U, U). See Appendix 1.

Next, we state necessary and sufficient conditions that describe the boundedness
patterns of System (1.1) when

B, > 0. (1.15)

System (1.1), with B; > 0, has the boundedness characterization (B, B), if and only if, one
of the following two conditions is satisfied:

C, € (0, 0) (1.16)
or

Al+C; >0 v=C,=0 and (¢ =0 or A; >0).
(1.17)
A]:Cl:'yzzczzo
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When none of the above two conditions (1.16) and (1.17) is satisfied, System (1.1), with
B; > 0, has the boundedness characterization (B, U).

One can see that System (1.1), with B; > 0, contains 196 special cases of which 142
special cases have the boundedness characterization (B, B) and 54 special cases have the
boundedness characterization (B, U). We should mention that when B; > 0, none of the
special cases of System (1.1) has the boundedness characterization (U, B) or (U, U). See
Appendix 2.

In Section 2, we establish that Condition (1.11) is necessary and sufficient for every
solution of System (1.10) to be bounded. When (1.15) holds, the proof is much simpler,
and the details are omitted.

We should point out to the reader that in Section 2 of this paper, when we investigate a
special case of System (1.10), for simplicity and convenience we may write the system in
normalized form, by using an appropriate change of variables of the form:

X, = AX, and y,= puY,.

By doing so, some of the parameters of the system may be chosen equal to one.

2. Necessary and sufficient conditions for the boundedness of solutions
of system (1.10)

The main result in this section is the following theorem, whose proof is long and will be
subdivided into several lemmas and observations.

THEOREM 2.1. Assume that Condition (1.2) holds. Then every solution of System (1.10) is
bounded, if and only if, Condition (1.11) is satisfied.

Assume that Conditions (1.2) and (1.11) are satisfied. We will show that every solution
of System (1.10) is bounded. As we can see, among the 146 special cases of System (1.10),
the 20 special cases listed in (1.12) are the only special cases for which Condition (1.11) is
satisfied.

The proof of boundedness of solutions of the first seven special cases of the systems
listed in (1.12) is straightforward. Actually, in the special case (6, 8), every solution {x,,,
v, } of the system is constant, for n = 2, and in the remaining six cases the component {x,,}
of the solution satisfies a second-order rational difference equation for which it is known
from [9] that every solution is bounded. The component {y, } in each of these special cases
is also clearly bounded.

The next lemma establishes the boundedness character of solutions of the special case
(6, 34).

LemmaA 2.1. Assume that
B2; v2,A2 € (0, ).
Then, every solution of the system

Xn
Xn+1 = —
n

y — Ban + Y2Yn (7
n+1 A2 +yn

(6,34) : n=0,1,... 2.1)

is bounded.
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Proof. Let {x,, y,} be a solution of System (2.1). Note that

X, X, A
Xny2 = o (1 + —2>, for n =0,
Yn+i1 ,32xn + Y2Yn Yn

_ Boxy + 2y _ Boxa
Yn+1 = <
A2 + Yn Yn

+ v = BoXyy1 + y2, for n=0,

and by eliminating the component {y,} from System (2.1), we find

Xn AZ-xn + Xn—1

—_— , n=0,1....
Xn—1 BZ-xn—‘f_'yZ

Xn+1 =

Now, the following two observations will be useful in the proof.
(1) In view of (2.2),

Xnt2 = 00 =y, — 0,
or equivalently,
if {y,} isbounded frombelow = {x,} isbounded.
(2) From the second equation of the system

y — Bzxn + Y2¥n
n+1 A2 +yn

we see that
{x,} isbounded frombelow = {y,} isbounded from below.

Also, from (2.2), we see that

Xn
Xn Yn
Xpio — 0= = —0
" B2xn + Y2Vn Ban + v
yil
and so
X,
Xn+1 = ——0.

Yn

In general, we have that
Xy, —0=x,—0, forall k=1.
From (2.4), we have

Xn+1 1 .A2xn + Xn—1 <~’2 Xn +i’ for YZZO,
Xn Xn—1 Ban + Y2 Y2 Xn—1 Y2

2.2)

(2.3)

(2.4)

2.5)

(2.6)

2.7)
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and so when

A2 < Y2,

the quotient x,,1/x, is bounded. But
Xn+1 l
xi‘l yn ’

1203

which implies that the component {y,} is bounded from below. Therefore, from (2.5) it
follows that {x,} is bounded, which in view of (2.3) implies that the component {y,} is

also bounded.
To complete the proof, assume that

Ay = Y2.

In view of (2.3), (2.5), and (2.6), it suffices to show that the component {x,,} of the solution

is bounded from below.

Assume for the sake of contradiction that there exists a sequence of indices {n;}

such that

Xp+1—0 and x,4 <x,, forn<mn+1.

In view of (2.7), we have
Xp, — 0,
and also
Xy—j— 0, forall j=0.
Choose a positive integer m such that

m

(Z—i) v <1 and m> y,.

There exists a positive number €, sufficiently small, such that

Xp—j < € < max{yg,%}, forall j € {0, ...,m}.

We now claim that, eventually
Y, = 1.

To prove (2.9), we consider the following three cases:

Case 1.

I

Y2

(2.8)

(2.9)



Downloaded by [Nat and Kapodistran University of Athens] at 13:32 28 February 2016

1204 A.M. Amleh et al.

Then,

= BoXu,—1 + VoYn—1 - Az + yu—1 -1

' Az + Yn—1 Az + yn—1
Case 2.

1 <y <A,
Set
;= lirﬂglfYn;fja forall j = 0.

Then,

BaXn—j—1 + V2Yni—j-1 7 + V2Vn—j-1
A2 + Yni—j—1 1+ Yni—j—1

Yni—j = =72,

and so it follows that
lj=",, forall j=0.

Then, in view of (2.8)

2 m m
Y2 Y2 Y2 Y2 Y2
y=—"—"—l 1 ==l 1 === =(=) ., = <1,
T A4, A ! (Az) : <A2) (A2> ”

which implies that, eventually (2.9) is true.

Case 3.
1 <y =A;.
From
i
,j:#lf_;l, i=0,1,...,
we see that
lo = _pbm ;
Y2 +ml_y,
and so in view of (2.8), we have that
Ih <1,

which implies that, eventually (2.9) is true.
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Hence, eventually,

— Xn; -
X+l = —— = Xy
n;

which is a contradiction and the proof is complete. ]
LeEMMA 2.2. In each of the following nine special cases: (which are listed in (1.12))
(14,7), (14,8), (14,16), (14,22),
(14,26), (14,31), (14,34), (14,41), (14,406),
every solution is bounded.

Proof. The proof of boundedness for the special case (14, 8) is trivial. The remaining eight
special cases are included in the system, which in normalized form is written as follows:

Xn+1 = len
14y,
oy [ n=0,1,..., (2.10)
I AL+ Coy

with
A+ >0 and (=0 or C>0).
Clearly the quotient,

Xn+1 _ Bl-xn . A2 + C2yn
Yn+1 ap +xn + Y2Yn 1 +yn

, forall n =0,

is bounded from above by the positive number M

Bimax{A,,C>} if A, >0 and C, > 0,

M= ! BiAz if A, >0 and C, =0,
B1C, if A, =0 and C, > 0.
Hence,
len

Xpp1 = < B —<[31M for n=1,

14y,
and so the component {x,} of every solution is bounded. Then, eventually,

Q + Y2Yn Xn _ max(az, y2) Xy _ max(a, v»)
Ay + Coy, A+ Coy, mm(A27C2) Cz Y m1n(A2,C2)

Yn+1 =
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provided that A, > 0 and C, > 0, or

_n M

Yn+1 C2 C2 )

provided that a; = A, = 0 and C, > 0, or finally

o + BIM
== "
Yn+1 A2 )

provided that y, = C, = 0 and A, > 0. Therefore, the component {y, } of every solution is
also bounded. The proof is complete. (|

The next lemma establishes the boundedness of solutions in the special case

X — len
n+1 1 +yn
(14,23) : a+x, n=0,1,.... (2.11)
Yn+1 =
Yn
LEMMA 2.3. Assume that
B1, ax € (0,00).

Then every solution of System (2.11) is bounded.
Proof. Let {x,, y,,} be a solution of System (2.11). Clearly,

Xn+1 _ len Yn = B[, forall n= 0,

Yn+1 a + X, 1 +yn

and so

Xpyl = len = Bl . ES B%, forall n=1.
1+yn Yn

Hence, the component {x,} of the solution {x,, y,} is bounded. Now, we claim that the
component {y,} of the solution is also bounded. Assume for the sake of contradiction that
there exists a sequence of indices {n;} such that, as i — oo,

V41— and  y,41 > y,, forall n <m + 1. (2.12)
From
o + Xp,
Yni+1 a +xn,»—l ni—1,

and in view of (2.12), we see that eventually,

Xy = Xp—1-
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Then

Xy, = 1'8_:_)(7;’:1 > Xp—1,
which implies that eventually

Va1 < B — 1. 2.13)
On the other hand,

Yo+l = j—nzi‘f‘%_’ 0,
which implies that

Y = y:‘: +;%—>0,
from which it follows that

Yn;—1 > 0.

This contradicts (2.13) and completes the proof. (|

It is interesting to note that, for all positive values of the parameters, System (2.11)
possesses the non-hyperbolic equilibrium point

0, Vo), (2.14)
and the prime period-two cycle
(0, y0), (o, %) ©,y0), <0,%>, (2.15)
Also, when
B> 1+ Ja, (2.16)

System (2.11) possesses the unique positive equilibrium solution

(B — 1) =, B — 1), (2.17)

which is locally asymptotically stable, as long as (2.16) is satisfied.

For the global behaviour of solutions of System (2.11), we offer the following
conjecture. For some results on the global character of solutions of rational systems in the
plane, see [1,2,7—-10].

CONJECTURE 2.1. Every solution of System (2.11) converges to a (not necessarily prime)
period-two solution.

The following theorem confirms Conjecture 2.1 in a special case.
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THEOREM 2.2. Assume that

B =1+ a. (2.18)

Then every positive solution of System (2.11) converges to a (not necessarily prime)
period-two solution of the form (2.15).

Proof. Let {x,, y,} be a positive solution of System (2.11). It suffices to show that the
component {x,} converges to zero.
Observe that

(84
Yn +yn—l = 2 +yn—l+ > +yn—l Z2\/0[_27

Yn—1 Yn—1 Yn—1

and
YnYn—1 = 02 + Xp—1 > 0.
Then
Xpi] = len — B%xn—l — B%xn—l
Ty A0y ) LYt Yt VYt
implies that
_ Bl _ B\
X+l =77 — -1 = | T7—/F— | Xn—1,

142/ + 1+ Ja

from which the result follows. O

Next, we establish the boundedness of solutions in the remaining two special cases
which are listed in (1.12):

(6,41) and (6,46).
The change of variables
yn=v2+Yy

transforms system (6, 41) to a system of the form (14, 31), whose boundedness was
established in Lemma 2.2. Finally, the following lemma establishes the boundedness of
solutions of the special case (6, 46).

LEMMA 2.4. Assume that

Bla Olz,,Bz, 727A2 € (07 OO)
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Then, every solution of the system

_ len
Xn+1 = y
(6,46) : ot Bt v [ n=0,1,... (2.19)
Yn+1 A2+yn

is bounded.

Proof. Let {x,, y,} be a solution of System (2.19). Clearly,

a + Boxn + Yoyn _ min{ay, y2}
Ay +y, -~ max{A,, 1}’

Yn+1 =

and so the component {y,} of the solution is bounded from below by the positive number

_ min{ay, y}
max{A,, 1}’

From this and in view of

n n n A A
T2 _ St :B‘x<2+1> SB‘<2+1), forall n = 1,
Bi Yur1 @+ BoXy + V2yn \In b \ m

we see that the component {x,,} of the solution is bounded. By the second equation of the
system, it follows that the component {y,,} of the solution is also bounded and the proof is
complete.

Next, we establish that Condition (1.11) is necessary for every solution of System
(1.10) to be bounded. That is, we will show that when

¢, =0, (2.20)

or when
C;>0 and B, =0, (2.21)

or when
C;>0, B,>0, and B, >0, (2.22)

or when
C;>0, B>0, >0, and B, =C, =0, (2.23)

System (1.10) has unbounded solutions in a certain region of the parameters and for some
initial conditions. In fact, we will prove that in each of the 126 special cases that
correspond to Conditions (2.20)—(2.23), the component {x,} or the component {y,}, of
each solution, is unbounded in a certain region of the parameters and for some initial
conditions. More precisely, we will obtain the boundedness characterization of each one of
the 126 special cases. This will complete the proof that Condition (1.11) is a necessary and
sufficient condition for every solution of System (1.10) to be bounded.
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First, observe that when (2.20) holds, the component {x,} of the solution of System
(1.10) is given by,

X, = (ﬁ—i) Xxg, for n=0.

Hence, when

Bl > A[ and Xog > 0,

xl‘[ - oo?
and System (1.10) has unbounded solutions. More precisely, when (2.20) holds System
(1.10) has the boundedness characterization (U, B) in 25 special cases and the
boundedness characterization (U, U) in 24 special cases (see Appendix 1).

Next, assume that (2.21) holds. In this case, the second equation of the system becomes

o + Y2Yn
Az + BQ)C,, + Czyn ’

Ynt1 = l’l:O,l,....

When
Ay >0 and C, =0,
System (1.10) contains 12 special cases, of which the 8 special cases with
Y2 > 07
have the boundedness characterization (U, U) and the four special cases with
Y2 = 07
have the boundedness characterization (U, B). The proof is straightforward and the details
will be omitted.
When
A2 >0 and C2 > 0,
or when
A2=0 and BZZO,
we see that the component {y, } of every solution is bounded. Then the first equation of the
system implies that, for 3 sufficiently large, the component {x,} is unbounded. That is, in
18 additional special cases, System (1.10) has the boundedness characterization (U, B).

When

AQIO and Bz>0,



Downloaded by [Nat and Kapodistran University of Athens] at 13:32 28 February 2016

Journal of Difference Equations and Applications 1211

we claim that the system

— x”
Xn+1 _Al +yn

by (0 =00 (2.24)
Ynt+1 = X, + Czyn

with non-negative parameters has unbounded solutions.
When

C, >0,

that is, in six special cases, the boundedness characterization of System (1.10) is (U, B).
More precisely, when

A1 >0 and C2 > 0,
the proof is given in [3]. When
A;=0 and C, >0,

that is, for the system

_len
Xp+1 =
Yn 0.1
. oty (0 T
| ===
" Xn + Yn

one can see that the component {x,} of the solution satisfies the second-order rational
equation

— len(Bl +xn)xn71
arx, + Bl Y2Xn—1

, n=0,1,...

Xn+1

and the result follows by employing Theorem 1.6 in [1]. Clearly, one can see that the
component {y,} of the solution is bounded.
On the other hand, when

the component {y,} of the solution {x,, y,} of System (2.24) satisfies the second-order
rational equation

_ a2 + v2y)Ar + yu-1) _
Yng1 = , n=0,1,...,
ay + YoYn—-1

which is easily shown to have unbounded solutions (see also [3]). We should mention that
the boundedness characterization of the system in this case is (U, U).
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Next, assume that (2.22) holds. In this case, the system can be written in normalized
form as follows:

X — len
n+1 A]+Yn

oty (0 0L (2.25)
Y+l = 4+

Ay +x, + Coyy

with non-negative parameters.
When

A27 C2 € (Oa 00)7
or when
C2>0 and CKQZAQZO,

the component{y,} of the solution is clearly bounded, and so, for 3, sufficiently large, the
component {x,} of the solution is unbounded. That is, in 12 additional special cases,
System (1.10) has the boundedness characterization (U, B).

When

ag, CZ € (O; 00) and Y2 = A2 = 07

that is for the two special cases, namely, (6, 33) and (14, 33) contained in

Xn+1 = P
Al +yn
o+ B n=0,1, ...,
Yn+1 = xn+yn

the boundedness characterization is (U, B). The proof for the special case (14, 33) is given
in [4]. The proof for the special case (6, 33) is similar.
When

a2, Y2, C2 € (07 00) and A2 = 07

that is for the two special cases, namely, (6, 48) and (14, 48) contained in

X _ :len
1=
" Al +yn 0.1
_a2+B2xn+72yn ’ T
Yn+l = ——
Xn +yn

the boundedness characterization is (U, B). The proof is straightforward and will be
omitted.
When

&)

Il
o
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System (1.10) contains 16 special cases in each of which the component {x,} of the
solution satisfies the second-order rational equation

_ len(AZ +xn71) _
Xntl = 5 n—O,l,...
AlAz + [(6%) + (A1 + l)x,,_l

which in view of Theorem 0.6 in [1] has unbounded solutions. When
=0 and A, >0,
or when
a=A=v=0,

that is, in six special cases, one can see that the component {y, } of the solution is bounded
and so their boundedness characterization is (U, B). In the remaining 10 special cases,
clearly the component {y, } of the solution is unbounded in some range of the parameters
from which it follows that their boundedness characterization is (U, U).

Finally, assume that (2.23) holds. In this case, the system can be written in normalized
form as follows:

AL+ n , n=0,1,.
Yol = 02 + Ban + Y2V

Xn+1

(2.26)

with
B2, v2 € (0,00), A, €[0,0), and A;+ ay € (0,0).
System (2.26) contains the following three cases:
(6,40), (14,25) and (14,40).

In each of these three cases, the boundedness characterization of the system is (B, U) as the
following theorem shows.

THEOREM 2.3. Let {x,, v, } be a positive solution of System (2.26). The following statements
are true:
(a) Assume that

BZ € (0700) and Y2 € [1; OO)
Then, the solution {x,, y,} of System (2.26) satisfies
limx, =0 and limy, = co.
(b) Assume that
B2 € (0,0) and 7y € (0, 1).

Then, the solution {x,, y,} of System (2.26) is bounded.
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Proof. Let {x,, y,} be a positive solution of System (2.26). The proof of (a) follows from
the fact that

Vnt1 = Yayn, forall n=0.

(b) For first, we will show that the component {x,,} of the solution is bounded. Observe that
foralln =0

Xn+1 Xn 1
Xppo = = . . (2.27)
A + Y1 At t+ar+ Boxy + 2yn AL+
When
A >0,
we find that
Xpyp = ——, forall n =0,
T BoAy

and so the component {x,} of the solution is bounded. From the second equation of the
system, it follows that the component {y,} is also bounded.
When

A =0,
(2.27) implies that
Xpt2 — 00 =y, — 0.
Assume for the sake of contradiction that there exists a sequence of indices {#n;} such that
Xpi+1 — 0.
Then, clearly
Yni-1—0,

which is a contradiction because {y,} is bounded from below by the positive constant c,.
Hence, the component {x,} of the solution is bounded. From the second equation of the
system, it follows that the component {y,} of the solution is also bounded.

The proof of Theorem 2.1 is complete. ]

Notes

1. Email: aamleh@gmail.com
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Appendix 1
The boundedness character of the rational system:
Xn+1 = len
Al + Clyn
yn+1:a2+32xn+72yn , n=0,1,.... (2.28)

AZ + BZ-xn + CZyn

The boundedness characterization (B, B), next to a special case of System (2.28),
means that both components of every solution of the system, in this special case, are
bounded.

The boundedness characterization (B, U), next to a special case of System (2.28),
means that the first component of every solution in this special case of the system is always
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bounded and there exist solutions in which the second component is unbounded in some

A.M. Amleh et al.

range of the parameters and for some initial conditions.

The boundedness characterization (U, B), next to a special case of System (2.28),
means that the second component of every solution in this special case of the system is
always bounded and there exist solutions in which the first component is unbounded in

some range of the parameters and for some initial conditions.

The boundedness characterization (U, U), next to a special case of System (2.28),
means that there exist solutions in which the first component of the solution in this special
case of the system is unbounded in some range of the parameters and for some initial
conditions and also there exist solutions in which the second component is unbounded

in some range of the parameters and for some initial conditions.

1

4,2):

4,3):

4,4):

4,5):

(4,6):

“4,7):
(4,8):

4,9) :

4,10) :

A,11):

4,12) :

4,13) :

“4,14) :

4,15) :

4,16) :

Xn+l = lena Yn+1 = Q3 (U,B)
[25)

Xpt+1 = lem Ynt+1 = — (U7B)
Yn
(2%)]

Xn+1 = lena Yn+1 = .X_ (U7 U)

n
Xpnt+1 = lenv Yn+1 = Y2Yn U,0)
Xnt1 = B1Xn, Yur1 = P2 (U,B)

_ _ Y2Yn
Xpt1 = B1Xn,  Ypp1 =

U, 0)

n

Xntl = lena Y1 = Ban (U7 U)

Xn
Xp+1 = Bl-xna Yyl = — (UJU)

n

Xnr1 = BiXn, Yur1 =72 (U,B)

a

Xn+1 lem Yn+1 1 +)7n ( ’ )
a
Xn4+1 = Bl-xm Ynt+1 = 1 T, (UaB)
[e%)
X1 = BiXn,  Ynr1 = (U,B)
'xﬂ +yl’l
Xnt+1 = lenv Ynt+1 = Y2Jn (U,B)
1+ yn
Xn4+1 = lem Ynt+1 = lyzyﬂ (U,U)
+ X,
ot = BiXny, Va1 = ot (U,B)
Xn + Yn
X,
X1 = BiXn,  Ynr1 = Pa U, U)

1+,
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(4a 17) : Xnt+1 = lenv

4,18) 1 xpq1 = Bixy,

(47 19) : Xn+1 = lena

(4720) : Xnt+1 = lem

4,21) 1 Xpq1 = Bixa,

(4722) : Xn+1 = .lem

(4,23) 1 xpp1 = Bixy,

4,24) 1 X1 = Bixy,

(4,25) 1 Xpp1 = Bixy,

(47 26) : Xn+1 = lem

4,27): Xpp1 = BiXn,

(4728) : Xn+1 = lena

(4729) : Xnt1 = lenv

(4,30) 1 Xup1 = Brxw,

(4331) : Xn+1 = lem

(41 32) : Xn+1 = lenv

(45 33) : Xn+1 = ﬁlxnv

(47 34) : Xnd+1 = lem

4,35) 1 xpq1 = Bixy,

y _ Ban

n+1 1 T,

y — Ban

n+1 X, +yn

Yn+1 = Q2 + Y2Yn

0 + Yo Yn
Yo+l = —————
Yn
_ 0y + Yo Yn
Yl = ——————
Xn
Yl = Q2 + X
(&%) +xn
Yn+1 =
Yn
(&%) +-xn
Yn+1 =
Xn

Y1 = Ban + Y2Yn

_Xn + Y2Vn
Y+l = —————
n
_ Baxy + Y2y
Yo+l = —————
Xn
_ a + Y2Yn
Yn+1 1 +yn
_® + Y2V
Yn+1 1 +x,
y _ + YoYn
| ="
" Xp + Yn
o + X
Yn+1 A2 +yn
oy tx,
Yn+1 A2 +x"
it = @ + Boxa
n+1 X, +y”
y — Ban + V2V
n+1 1 +yn
_ BZ-xn + Y2Yn
Yo+l = ——

1+ x,

(U,B)

(U,B)

(U, U)

(U,B)

U, 0)

U, 0)

U, U)

U, U)

U, 0)

(U, U)

(U, )

(U,B)

(U, 0)

(U,B)

U, 0)

(U,B)

(U,B)

(U, 0)

U, 0)
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4.36): o1 = Purey s = P22 I gy
Xn + Yn
(%)
4,37) 0 Xpi1 = Bixe, Y1 =——2 (U,B
( ) 11 =B Vnt1 yr—— ( )
Y2¥Vn
4,38) : = Bixy, Vo =—2"  (U,B
(4,38) 1 Xpr1 = BiXu,  Ynti v (U,B)
Ban
4,.39):  x,11 = Bix,, w1 =———— (U,B
( ) 1= Ynt1 i (U,B)
(4,40) :  Xpq1 = BiXn, Yur1 = @+ X, + Y2y, (U, 0)
@411 31 = Bixns Yor =“2+xyﬂ U, V)
@,42) 1 X1 = Bixns Yor =“2+XXJ U, V)
a2+72yn
4a43 : n = ns n i E— U,B
( ) Xp+1 = BiXn,  Yntl Y ( )
ay + x,
4,44) : = Bixn, Vi1 = —21"  (U,B
(4,44) 1 xp1 = BiXu,  Ynti A+t (U,B)
Boxy + Yayn
4;45 : n = ns n - —— U,B
( ) Xp+1 = BiXn,  Yntl A tx ( )
@,46): o1 = By, Y = 2T W E VI g )
A2 +yn
@AT) = B,y = 2T
AZ +xn
G48):  xor1 = Brxes s = 2T P TV
Xy + Yn
a2+xn+y2yn
4,49) : il = " T B — U,B
( ) Xp+1 = BiXn,  Yntl A Fx, oy, ( )
Xn
6.1 xe =By1 Y= (UB)
Xy, «
6.2): xpu=PM =% uB)
Yn Yn
X «
63): xu=P" =% wu
yVl xl’[
Xn
6.4): 1 =P =y (UU)

(675) : Xn+1 =

sy Y+l = BZ (U7B)
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(6,6) : xn+1=By1j", yn+1=”f” (U,U)

6,7 xn+1=By‘j”, Yur1 = Bax,  (B,B)

6,8) : xn+1=31j”, yn+1=x—: (B, B)
_ Bix

6,9 : x40 = e Yur1 =7v2 (U,B)

n

:len a)
6,10) : il = , ] = U,B
( ) Xnt1 " Y+l A+, ( )
,len an
6,11): el = ——, il = U,B
(6,11) Xnt1 ) Yntl TTx, ( )
X, o
6.12): xp =P = ®  (uB
n xn+yn
,len Y2Yn
6,13): ] = , el = U,B
619w =Py = P U
xﬂ n
6.14) 1 xpyy =P ynﬂzlm (U, V)
n + x,
xn n
6.15): xpp =Py = Py B
n Xn + Yn
'x” -xl‘l
6.16): xpp =Py = PY g g
n I+ y,
X, X,
617w =Py = P )
n +‘xn
Xn Xn
6.18): xu =P =P g
yn ‘xn+yn
X
(6,19) : xn+1=B1 , Ynp1 = a2+ yy, (U, U)
X ay + n
(6,20) : an:Byl C e = g
Xn ap + "
6,21) - xn+1=3y1 e =2 )

Bl-xn

(6722) : Xp+1 = ;o Yl = Q2 + X (B7B)

n

1219
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(6,25) :

(6,23) 1 Xpp1 = Bl:”, Ynt1 = L_:x"
6.24): xy =PE o, et
Yn )
Knt1 = B]:n s Y1 = BaXn + Yoyn
(6,26) 1 Xpy1 = 'B]jn7 Ynt+1 = )L:Qyn
6,27): Xy = ’61:”7 ot = M
(6,28):  xy0y = Bljﬂ ot = %
(6,29):  Xup1 = Blj", Y1 = azli%
(6,30) 1 xpp1 = Bljn7 Ynt+1 = %ﬁj}”
03 ma=E =
(6.34): x =0, gy = P
(6,35 Xup1 = Blj"7 ntl = 'Bzx%;fy"
(6,36) 1 Xuy1 = ,31_nxn7 Ynt1 = %}fh
6,37 w1 = By‘j”, ot =
(6,38):  xp11 = 'Bl:na Yn+1 = Az_i:yiim
6.30): xpuy =Py Bax

A.M. Amleh et al.

n

_A2 + X +yn

(B,B)

U, U)

(B, U) See Conjecture 1.1.

(B,B)

(U, U)

(U,B)

(U, U)

(U,B)

(B,B)

(U,B)

(U,B)

(B,B)

U, U)

(U,B)

(U,B)

(U,B)

(U,B)
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Xn
(6740) . Xn+1 = Bl ) Vn+1 = Q2 +xn + Y2Yn (BvU)
6,41): xpy =Py =t E Y g g
Yn Yn
642 xp =Py 2 BEREI @ )
.len ) + Y2Yn
6.43): xy =Pn o @EP
( ) +1 ) Y+l pp—— ( )
.len an +xn
6.44): xp =P oW g
( ) +1 " Y+l p— ( )
:len B2xn + Y2Yn
6.45): x, =P P E Y g
( ) Xnt1 ) Y+l T ( )
(6,46): xpp =Py =TT YN g g
Yn A2 +yn
6.4T): =Py = QETREYI )
Yn A2 +xn
(6,48): xpn =Py, = EPE Y g
n ‘xn +yn
len a + X, + YoV
6,49): x, =P WAV g
Xn
(14,1 :%’ Vur1 = @ (U,B)
Bix, a
14,2) 1 xpp1 = ma Yut1 = — (U,B)
14,3) 1 xpp1 = Bin y o Yl =2 U,0)
1 +yn xl‘l
X
14,4) 1 xpp1 = A , o Yat1 = Yoye (U, U)
L+ y,
Bl-xn
(14,5):  xpp1 = 1Ty, Ynt1 = B2 (U,B)
'xn n
(14,6 xa=0 =2 )
+ yu Xn
X
4,7 xpp1 = B , Yo+t = Box, (B,B)
14y,

1221
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(14,8) :

(14,9) :

(14,10) :

(14,11) :

(14,12) :

(14,13) :

(14,14) :

(14,15) :

(14,16) :

(14,17) :

(14,18) :

(14,19) :

(14,20) :

(14,21) :

(14,22) :

(14,23) :

(14,24) :

(14,25) :

A.M. Amleh et al.

Kot = ff;”, Vati =§—: (B,B)
Xat1 = f fy Yas1 =7 (U,B)
St =ff;n, it = (UL
Xpt1 = IB_:_X;H’ Y+l = l—cil—izx,, (U,B)
Xpt1 = 1.3:6;”7 Vo1 = xnofyn (U,B)
Katt = ff;n, Vat1 = Aij - (UB)
Xat1 = f fy I lyiy;” (U, U)
Xpgp1 = 1'8:6;", nrl = x:/fnyn (U,B)
Xpg1 = IB_;_x;n7 Yntl :AZ'B:)_C';” (B,B)
Xpt1 = IB_:_X;H’ Y+l = I'Bj_x;n (U,B)
tugt = ff;n, Vi1 =xff"y - B
Katt = IB fy Va1 = @ + yyn (U, U)
Xpg1 = 13_:_15;”7 Ynt1 = % (U,B)
Kot = IB jrxy Vo1 = azzi (U, U)
Xpr1 = IB_:_x;n, Yor1 = a2 +x, (B,B)
Yug1 = ]Bf;n, ot = %ﬂﬁ”‘" (B.B)
Katt = ff‘;n, Vnt1 = %ﬂﬁﬂ” U, U)
=PI = By, (BLU)

1+,
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Xn Xn + YoYn
(1426 x =Ly, = g
+ Y Vn
(14,27) 1 xp41 = 1’81x” s Vgl = M (U,U)
+ Vu Xn
(14,28): xppy = D0y 2RI g,
1+yn A2 +yn
(14.29): x,, =P —eT Yy
1 +y,, 1 +xn
(14,30): xppy = D0y 2RI gy
L+ ya Xn+ Yn
len a2+32xn
14,31) ;X1 = . Vel = —— 2 (BB
( ) Xup 1+, Ynt1 A+, (B,B)
Bix, ar + Box,
14,32) 1 Xpuy = . Y = — 2 (U,B
(14,32) : xpq 14y, Ynt1 Ar+x, ( )
Bix, ar + Box,
14,33):  xp1 = . Yl = — 2 (U,B
( )i Xngi 14y, Ynt1 PR ( )
len Ban + Y2Yn
14,34) 1 xpp1 = . oy =2 (BB
(14,34) : xpy1 I+, Ynt1 A 1y, (B,B)
len Ban + Y2¥Yn
14,35):  Xpy1 = s Y1 =———— (U,U
(14,35) 1 xpy1 14y, Yat1 1+, ( )
len Bzxn + Y2Yn
14,36) :  xppy = . gy =AM (U B
( ) +1 1+ v, Yn+1 PR ( )
Bix, a
14,37) Xy = . Y =—>—— (U,B
( ) +1 1 v, Yn+1 A> + Boxn + v ( )
1438): xuy =Py =P (R
1+yn A2+BZ-xn +yn
len BZ-xn
14,39): x40 = y Y1 =————— (UB
( ) +1 1+, Yn+1 A> + Boxn + v ( )
Xy
(147 40) : Xn+1 = IBI s Yn+l — Q2 + x, + Y2¥Yn (BaU)
+ v
(14,41):  xpp1 = IBIX" . Vpsl = m (B, B)
+ yu Yn
(14,42) :  x,q1 = Bixa . Vsl =m (U,U)

1 +yn Xn

1223
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len a + Y2Yn
14,43) : il = , il =———  (U,B
I AL vy e
Bix, ay +x,
14,44) : ] = , w1 =— (U,B
( ) Xn+1 14y, Yn+1 As + Boxy + v ( )
len Ban + Y2¥n
14, 45) : Xn+1 — ) nHl = T, U7 B
( ) 1= Ty, Yn+1 A+ Boxy + (U,B)
Bix, ay + Boxy + Y2yn
14,46) : x4 = , i) =————  (B,B
( ) 1= Ty Ynt1 A+, (B,B)
Bix, a + Box, + VaYu
14,47) : il = , ] =————— (U, U
( ) Xn+1 1+, Yn+1 A, +x, ( )
(14,48) :  Xpi1 :&, Vi1 :w (U, B)
1+ y, X+ Y
Bl-xn o +x, + Y2¥n
14, 49 : Xn = 5 n = U7 B
( ) +1 1+, Yn+1 A> + Boxn + v, ( )
Appendix 2
The boundedness character of the rational system:
X — len
i Al +xn+clyn
i+ Baxa+ vy (7 n=0,1,.... (2.29)
Ynt+1 =

AZ + BZ-xn + CZyn

The boundedness characterization (B, B), next to a special case of System (2.29),
means that both components of every solution of the system, in this special case, are
bounded.

The boundedness characterization (B, U), next to a special case of System (2.29),
means that the first component of every solution in this special case of the system is always
bounded and there exist solutions in which the second component is unbounded in some
range of the parameters and for some initial conditions.

The boundedness characterization (U, B), next to a special case of System (2.29),
means that the second component of every solution in this special case of the system is
always bounded and there exist solutions in which the first component is unbounded in
some range of the parameters and for some initial conditions.

The boundedness characterization (U, U), next to a special case of System (2.29),
means that there exist solutions in which the first component of the solution in this special
case of the system is unbounded in some range of the parameters and for some initial
conditions and also there exist solutions in which the second component is unbounded
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in some range of the parameters and for some initial conditions.

G, D xr1 =B, Y1 =a (B,B)

o
(5,2):  xup1 = B, ynH:y—z (B,B)

a
(5,3 X1 =p1;, Y1 =— (B,B)

(574) : Xn+1 — Bla Yn+1 = Y2Vn (B,U)
(5.5 Xp1=PB1; Yut1 = P2 (B,B)

2
(5,6): Xp11=P1, Yur1= Y2Jn

B,U)

n

(577) : Xnt1 = Bla Ynt+1 = B2xn (B;B)

X,
5,8): X1 =81, Y11= y_n (B,B)

n

5,9 X1 =B, Y1 =7 (B,B)

a

5,100 xp01 = B1, Yur1 = B,B

( ) +1= B, Y41 A+ v ( )
an

5,11): w1 = P, w1 =—— (B,B

G, 1D X1 = B1,  Yuti T+ (B,B)
(0%

(5,12 X1 =Bi, Y1 =——— (B,B)
Xy + Y
Y2Yn

5,13): X1 = Biy Yni1 = B,B

(5, 13) 1 Xpr1 =P, Yuri X+, (B,B)

(5,14) 1 xup1 = B, ym:lm” (B,U)
+ Xn
Y2Yn

(5.15): Xop1 = Bi, yur1 = —2"  (B,B)
Xy + Y
BZ-xn

5,16) : n+1 = P1, n+l = B,B

( )i Xpgr1 = Bi, Ynti A+ (B,B)
Xn

G5 x =B i =2 BB
+ x,
Xn

(5.18): xor1 =B, =" (B,B)
Xy + Y

(5,19 x1=P1, Y1 =02+ vy, B,U)

ay + "
(5,20): Xy = B, yn+1=2y—”y (B,B)

n

1225
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ay + n
(5.21) 0 X = B, yn+1=2x—”y (B,U)

n

(5722) L Xl — :8]7 Yl = 02 + X, (BaB)

a + Bax,
(5.23):  xo1 = B, yn+1:2y—ﬁz (B.B)

a + Bax,
(5.24):  xo = B, ynH:Zx—BZ (B,B)

(5,251 Xpr1=PB1, Yur1 = Boxn+ v2y. (B,U)

(5.26): o1 =Bi, w1 = 2T (B B)
G2 =B,y =TI )
a2+72yn
5.28):  xprt = Br, ypy = 2TV g p
( ) Xp+1 = B1s  Ynt1 A+, (B,B)
(5.29): 3 =By yup = 2P g )
1+x,
(5.30): 3 = Biy yup = 27 g p)
Xy + Y
o + Box,
531): xper = Br, v = 2P0 pp
( ) +1 = B1,  Ynti A+, (B,B)
o + Box,
5.32): xput =B, v = 2P pp
(5,32): Xpr1 = B1,  Yut1 A (B,B)
(5.33): xo1 = Bi, v = 2TP g g
Xy + Y
(5.34):  xpp1 = Bi, yun = X TV g
A2+yn
35): i =Bi, e = 22T g y)
(5,35) B B
1 4 x,
(5.36):  Xor1 = Bi, yuu = X TV
xn+yn
84
(5,37): Xyt = Bl, Va1 = 2 (B, B)

A2 + BZXn + Yn

Y2Yn

5.38):  xpet = B, ygu = —— 2
( ) 1 =01, Yuri YV ——

(B,B)
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(5,39 xp41 = B,

(5740) : Xnt+1 = Blv

(5141) : Xpn+1 = Bla

(5,42) 1 X1 = B,

(5743) : Xntl = Blv

(5744) : Xntl = Bla

(5745) : Xntl = Bla

(5,46) 1 xpp1 = B,

(5a47) : Xn+l — Bla

(5,48) 1 xpp1 = B,

(5749) : Xnt1l = .Bla

Bax,
Yt Ay + Box, Yn ( )

Yo+l = @ + X, + 2y, (B, U)

a + Ban + Y2Yn

Yyt =————— (B,B)
Yn
ar + Box, + Vayn
o1 = LRI g )
Xn
o + Y2Yn
n+1 — — B,B
Yn+1 As + Boxn + v ( )
a + x,
n+1 — — B,B
it AZ + Ban +yn ( )
Bzxn + Y2V
Ynt1 =————— (B,B)
AZ + B2xn +yn
o + BZ-xn + Y2Yn
g = 2 TP TR g g
Yn+1 As + v ( )
o + BZ-xn + Y2Yn
n+1 = — B,U
Yn+1 A, +x, ( )
o + Ban + Y2Yn
Y1 =——— (B,B)

Xn + Yn

o +x, + Y2Yn
Y1 = (B,B)
A2 + B2xn +yn

(13,1 xn+1=%, Vari = (B,B)
(13,2): x,m:/%, =2 (®.B)
(13,3) xn+1=f%, i =2 B,U)
(13,4) Xn+1=/%, Vari = yyu (B.U)
(13,5) an:Afgf’;n, Vusi = B2 (B.B)
(13,6) : xn+1=Af3‘jf';n7 yn+1=yjcf” (B,U)
137 xn =22y =B, (B,B)

A] + x,
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1228
1597w
1395 =75

131005 s =22
1311 = 72
13.12): = 772
13195 =72
(3105 =322
13195 =322
13.10): s =724
13175 =72
(13,18) : x"“:AIBlTxnxn’
(13,19) : an:A]Bf;n’
(13,20) : x,ﬁlzl%?
(13,21): xn+1=%>
(13,22) : an:/%’
(13,23):  xXpp1 = Alﬁfx
(13,24) 1 Xps1 = Bixn

A+,

Xn
Yur1 =— (B,B)
Yur1 =7v2 (B,B)
)
n = — B,B
Yn+1 At ( )
a
n = — B7B
Yn+1 T +x, ( )
2 _ (8,B)
Y+l = ,
’ Xn +yn
Y2Yn
n - B7B
Yn+1 A+, ( )
Y2Yn
n - B7U
Yn+1 T+, ( )
Y2Yn
n = B’B
Yn+1 o+ 9 ( )
Ban
n == B7B
Yn+1 A+, ( )
:82xn
n - B,B
Yn+1 1+, ( )
BZ-xn
n = B,B
Yn+1 Y o ( )
Vn+1l = Q2 —+ Y2Vn (B7U)
oy + »
Yoy = 2TV g g
Yn
oy + .
Ynd+1 = 27’)/2)] (B,U)
xn
Vat1 = @ +x, (B,B)
oy + Bax,
n+1 — 2 BZ (B7B)
Yn
ay + Box,
= — xﬁz (B,U)
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(13,25)

(13,26) :

(13,27) :

(13,28) :

(13,29) :

(13,30) :

(13,31) :

(13,32):

(13,33) :

(13,34) :

(13,35) :

(13,36) :

(13,37)

(13,38) :

(13,39) :

(13,40) :

(13,41) :

X _ len
n+l —
Al +x,’
X _ len
+1 —
! Al +xn7
X _ len
+1 —
n A, +xn7
X _ len
+1 —
n A +xn7
X _ len
+1 =
n A +xn>
X _ len
n+1 —
Al +x,’
X _ Bl-xn
+1 —
n A +xna
X _ len
+1 —
n A +Xn,
X _ len
n+1 — )
Al + x,
X _ Bl-xn
+1 —
n A +x”7
X _ len
+1 —
" A1 -{-)Cn7
X _ len
+1 —
n A +xn>
X _ Bl-xn
+1 —
n A +xn7
X _ len
+1 —
" Al +x,’
X _ Bl-xn
+1 —
n A +xn’
X _ len
+1 —
! Al "i_xn7
X _ len
+1 —
" A +x,’

Yn+1 =

Yn+1

Yn+1 =

Y1 = BoXp + V2Vu

Xn + Y2Yn

n

Yn+1 =

B2xn + Y2Yn
Xy

Yn+1 =

y _ o + Y2Yn
n+1 A2+Yn

_ @+ Y

Yn+1 1 Tx,

y _ o + Y2Yn
n+1 —Xn +)’n

a + Box,

Y+l = A t
_ @+ B
Yn+1 Az-l-xn

y _ay+ Bax,
=2 P
" Xp + Yn

_ Ban + Yo Yn

n+l1 — A2 +Yn

Yn+1 — l +x”

Ynt+1 = X, +yn

a

Y2Yn

BZ-xn

Yntl = 02 + Xy + VoY

_ + Ban + Y2Yn
n+l ———

Yn

_ Boxny + Y2y

_ Ban + YoYn

Ay + Box, + y,
- A2 + BZXn + Yn

Ay + Bax, + v,

B,U)

(B,B)

B,0)

(B,B)

B,U)

(B,B)

(B,B)

(B,B)

(B,B)

(B,B)

B,0)

(B,B)

(B,B)

(B,B)

(B, B)

B,0)

(B,B)
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(13,42) xn+1=/%, yn+1=%:+m (B.U)
(13,43): xpp =200y, =2t g
A+ x, Az + Baxy + Y
(13,44) : an:%, yn+1=1#+xj”+yn (B,B)
(13,45) : an:Aflj”xn, yn+1=/% (B,B)
(13,46) ; xn+1=Afg‘jf’;n, yn+1=%m (B.B)
(13,47) ; xn+1=Af3f"xn, yn+1=W (B.U)
(13,48) ; xn+1=ff"xn, yn+1=%”;m (B.B)
(13,49) - Xn+1=1%, yn+1=f;ji+m (B,B)
(15, 1) )%F%, Vas1 = (B,B)
(15,2) an:%, v =2 (B.5)
(15.3) xn+1=$’j:yn, i =2 B,U)
(15,4) : xn+1=$’fﬁyn7 Yas1 = yyn (B,U)
(15,5) : xn+l=$f:yn, Var1 = B2 (B,B)
(15,6) Xn+1:%, =22 @,0)
(15,7) - xn+l=%, Var1 = Boxs (B.B)
(15.8) xn+l=%, =" B.B)
(15,9 xpu=-P =y ®B)

len +yn
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len
15,10) 1 xppy = —21m 0y = B,B
( ) +1 Birn + v Yn+1 A+ ( )
len a
15,11): xppy =20y = B.B
(I5,11) = X Bix, +, Yn+1 T+ x, (B,B)
len a
15712 : Xn = n = B7B
( ) 1 B+ Yn+1 oty (B,B)
Bix, Y2Yn
15,13) 1 xpuy = —1 ) = B,B
( ) I Ynt1 X+, (B,B)
Bix, Y2Yn
15,14) :  xpuy =Py = B,U
(15,14) = xppa Bix, +, Yn+1 T+x, (B,U)
Bixn Y2V
15,15): xpu =Py = B,B
( ) Xap Bix, 4, Ynt1 o+ (B,B)
len B2xn
15,16) 1 xppq =Dy = B.B
( ) el Bl-xn +yn Tl AZ +yn ( )
len B2xn
15,17) 1 xppy = —PF 0y = B.B
(A5, 17) 0 xppa Bixy -, Ykl =1 (B,B)
len Ban
15,18) 1 xppy = —bn oy = B.B
( ) ! len +yn il Xn +yn ( )
Xn
15.19): X ==y = a o B,U)
Bl-xn +yn
(15,200 g =ty =2 E PN g g
Bl-xn +yn n
(15,20 mr = o0y, =M g )
lxn—‘f_yn Xn
Xn
(15722) © Xl = La Ynt1 = Q2 + X, (BvB)
Bix, + v,
(15291 xu=p by, =T PN g
1x11+yn n
1524 xen=p oy 2B gy
1Xn +yn Xn
. _ len _
(15525) . Xntl = 55— Yntl = Ban + Y2Yn (BaU)
len +yn
len _Xn + Y2Yn

(15326) : Xn+1 = Yn+1

len +yn,

=B (B, B)

n
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Xn Xn + V2Yn
15,27) 0 dpy = o0y, =B gy
len +yn n
(15,28): = oy, =R
len +yn AZ +yn
(15,20): xppy = o0y =R gy
Bix, + v, 14+ x,
(15,30 xpp = o0y, =R
Bix, + yu Xn + Yn
Bix, ar + Box,
15,3): xpy1=———, ypu1=—— (B,B
( ) 1 B Ynt1 A+, (B,B)
Bixy ay + Bax,
15,32) : ] =————, Y1 =——— (B,B
( ) Xapl By + v, Yn1 At (B,B)
Bixy ay + Bax,
15,33): ntl = 5 1= B.B
( ) s Bl-xn +yn et Xn +yn ( )
,len B2xn + YoV
15,34) 1 Xppy = —— oy =2t TR g B
( ) Xal I Yn+1 A4y, (B,B)
Bix, BaXy + Vayn
15,35) : ] =————, Yy =—-—--—— (B,U
(15,35) Xn+1 Bix, + v Yn+1 1 +x, ( )
len Ban + Y2Yn
15,36): xpyy=——, Yy =—"— (B,B
( ) +1 Bixy + v Yn+1 %o + v ( )
Bix, a
15,37): xpp=—tb" oy =— 2 (BB
( ) ! len +yn Yt A2 + Ban + Yn ( )
B].X,, Y2Yn
15,38): Xy =l oy = TP (BB
( ) ! len +yn s A2 + Ban + Yn ( )
Bl-xn BZ-xn
15,39) 1 Xpy1 = -t oy =—2" (BB
( ) o len +yn Yl A2 + Ban + Yn ( )
x"l
(15,40) :  xpq1 = Bl—’ Yur1 = a2 + X, + 2y, (B, U)
len +yn
Xn ay + Xn + n
15,411 xp = by SR E RN g
1Xn +yn Yn
Xn ay + Box, + n
(15,41 xn=p oy 2 RE RN )
1Xn +yn Xn
Xn a + n
(5,43): =Py = @F Y g

len +yn

AZ + B2xn + Yn
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(15,44) ; xn+1=$j’jy}17 yn+1=f% (B,B)
(15,45) ; me%, yn+l=% (B.B)
(15,46) : xn+1=%, ms%m (B.B)
(15.47) )%F%, yn+1=W (B.U)
(15.48) : xn+l=$’f:yn, yn+l=%”;m" (B.B)
(15,49) ; xn+1=%7 yn+1=f“ji;+m (B.B)
(38.1): xn+1=1$f;ﬂl7 a1 =@ (B.B)
(38.2): an:f%, =2 B.B)
(38.3): an:f%, i =2 B,U)
(38.4): xn+1=f$’;:+yn, Vot = yyn (B,U)
(38.5) - xn+1=f$’;:+yn, Vuii = B2 (B,B)
(38.6) - xn+1=f$f;+yn, =220 B,0)
(38,7) : xn+1=f$i’;+yn, Yot1 = Bax,  (B,B)
(38,8) : xn+1=f$f;+yn, yn+1=)yc—: (B,B)
(38,9) : xn+1=f%, Va1 =7 (B,B)
(38,10) : xn+1=f% yn+1=A2‘fiyn (B, B)
(38,11) : xn+1=f%, yn+1=1fxn (B,B)
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len an
38,12) 1 xpp1 =——7—, ]l = B.B
( ) +1 AL+ Bixy + v Yn+1 PR, ( )
Bl-xn Y2Yn
38,13): xpp=——m7—, il = B.B
( ) = A T Brx, Ty Yn+1 A+, (B,B)
G814 =y = PP gy
A1+len+yn 1+xn
Bi1xy YaYn
38,15): xpp=—-—7-—", w1 = ———— (B,B
( ) - Al +len +yn el Xn +yn ( )
len .BZXn
38,16): xpp=—7-—"7-——, ] = B,B
( ) AT Bix, £ Yn+1 A+, (B,B)
len ,BZXn
38,17) : ] = ——————, ] = B.B
( ) Xntl A+ B, T, Yn+1 T+, (B,B)
len ,BZXn
38,18) : ] = ———————, w1 = —— (B,B
( ) s Al +Bl-xn +yn et Xn +yn ( )
len
38,19) : ] = ————————, ntl = + x (B, U
( ) Xn+1 A+ By + v Yn+1 o+ vy, ( )
(38,20 my—— b E Y g g,
Al + len +yn Yn
(8,20): my—— b T gy
A+ Bix, + v Xn
len
38,22): Xy =—, el = +x, (B,B
( ) +1 AL+ Bixy + v Yn+1 (2%] ( )
Bl-xn a + BZ-xn
38,23) 1 xyp = —i———, w1 =—  (B,B
( ) +1 AL+ Bixy + v Yn+1 o ( )
Bl-xn (2%) + BZ-xn
38,24): xpp =—7——, w1 =—  (B,U
( ) Ry Ynt1 X, (B,U)
(38,25 =~ Bty BU)
Al +len +yn
len Xn + Y2¥n
38,20): xpp=—--—"——, w1 =— (B,B
( ) +1 A1+ By + v Yn+1 Va ( )
Bl-xn :82xn + Y2Yn
38,27): Xy =—7——, ) =———— (B,U
(38.27)1 i = g p Tt g = (BLU)
(38,28): xpy = — D0 P AT

Al"i_len'i_yn7 A2+yn
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(38,29) ; xn+1=f%, yn+1=%zy” (B,U)
(38,30): xpu=- b SR TYI g p,
Al + Bix, + y, Xn + Yn

(38,31) : xn+1=/%, yn+1=%f;:" (B.B)
(38,32) : xn+1=[%, yn+l=%ﬁij’“ (B,B)
(38.33) xn+1=f%, yn+l=%ﬁ;f” (B.B)
(38,34) : xn+1=/$’;’;+yn, yn+1=ﬁzj%;jy" (B.B)
(38.35) xn+l=/$z+yn, yn+l=ﬁzx%)fy" (B.U)
(38,36) : an:[%, )MHZBZ;C:%;?)% (B,B)
(38,37) : anZ%, y,m:f#jm (B,B)
(38.38) - xn+1=f%, = e (BB)
(38,39 - xn+1=f%, ynH:% (B.B)
(38,40) an:f%, Vur1 = @2+ %+ 250 (B,U)
(38,41) : xn+1=f$f;+yn, yn+1=w (B.B)
(38,42) ; xn+1=f%, ym:%:””” (B,U)
(38,43) : xn+1=f$i’;ﬂl, yn+1=% (B.B)
(38,44) : xn+1=f$fc’;+yn, yn+1=/% (B.B)
(38,45): xu=-— PP o Pudyn g g,

Al +len +yn

A2 + BZXn + Yn
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(38, 46) :

(38,47)

(38,48) :

(38,49) :

A.M. Amleh et al.

X — Bl-xn y — a + BZ-xn + Y2Yn
n+1 A] +len +yn7 n+1 A2 +yn
X — Bl-xn y — o + BZ-xn + Y2Yn
n+1 A] +len +yn7 n+1 A2 _’_x"
X — len y — a + Ban + Y2Yn
A+ By, T X+ ¥
X — len y _ ay +x, + Y2Yn
il Al +B1xn +yn’ nH A2+B2xn +yn

(B,B)

B,U)

(B,B)

(B,B)



