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Abstract

We study the behavior of all positive solutions of the difference equation in the title, ywhiera
positive real parameter and the initial conditions, x_1, xg are positive real numbers. For all the
values of the positive parametgrthere exists a unique positive equilibriufnwhich satisfies the
equation
P=i+ p.

We show that if O0< p < 1 or p > 2 every positive boundksolution of theequation in the title
converges to the positive equilibriuin When O< p < 1 we show the existence of unbounded so-
lutions. Whenp > 2 we show that the positive equilibrium is globally asymptotically stable. Finally
we conjecture that when<4 p < 2, the positive equilibrium is globally asymptotically stable.
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1. Introduction and preliminaries

Consider the difference equation
P+ xn-2
Xn

Xnp1= n=0,1,..., (1)

* Corresponding author.
E-mail addresscamouzis@otenet.gr (E. Camouzis).

0022-247X/$ — see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2003.10.016



E. Camouzis et al. / J. Math. Anal. Appl. 291 (2004) 40-49 41

wherep is a positive real parameter, and the initial conditians, x_1, xg are arbitrary
positive real numbers.

The following theorem, which is a direct consequence of the conditions given in [4],
gives explicit conditions for the local asymptotic stability of the positive equilibriuof

Eq. (1).

Theorem A. The positive equilibriunt of Eq. (1) is locally asymptotically stable when
p > land unstable whe@ < p < 1.

When p = 1 local stability analysis fails. In this case a period five cycle appears. It has
been conjectured in [1] that Eq. (1) possesses the following period-five trichotomy:

(a) Every solution of Eq. (1) has a finite limit if and onlyf> 1.
(b) Every solution of Eq. (1) converges to a period-five solution if and onpy=f 1.
(c) Eq. (1) has positive unbounded solutions if and only# p < 1.

Part (b) of the conjecture has been verified in [1]. See also [2,3].

2. Global analysis of positive solutions of Eq. (1)

Theorem 1. Let{x,};2 _, be a positive solution of Eq1) for which there exist&V > —2
such thatxy < x andxy41 > X, or xy > X andxyy1 < x. Then the solutiorx, }>> _,
oscillates about the equilibriua with every semicycléexcept possibly the firshaving
at most two terms.

Proof. Let N > —2 such thatcy < x < xy+1. The case wherey 1 < x < xy is similar
and will be omitted. Now suppose that the positive semicycle beginning with thecterm
has two terms. Theny < ¥ < xy+2 and so

p+xy p+x

XN43 = <275
XN+2 X

The proofis complete. O

In view of Theorem 1 and without loss of generality, when we refer to an oscillatory
solution of Eq. (1), we will assume that the first semicycle of that solution, positive or
negative, will contain at most two terms.

Theorem 2. All nonoscillatory solutions of Eq1) converge to the positive equilibriuim

Proof. We will give the proof of the theorem in the case of a single positive semicycle.
The case of a single negative semicycle is similar and will be omitted. Assume, that
for all n > —2. We first claim that for this solution

Xn_2>x, foralln=0,1,....
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For the sake of contradiction assume that there existsO such thatcy_2> < xy. Using

Eqg. (1) we have

D+xN-2 _P +xn
XN XN

which is a contradiction and so

XN+1=

x<x, <xp—2 forn=0,1,....
In addition fori = 0, 1 there exists; such that

lim Xon+4i= Q.
n— 00

It follows that {«g, a1, a0, @1, ...} IS @ periodic solution of not necessarily prime period
two. On the other hand Eq. (1) has no prime period two solutions, ang@ soa; = x.
The proofis complete. O

The following will be useful in the sequel. Set

fo, ) =px+ p2+ (% - p)y,
g(x,y) = (p> = pHx + (p? — pxy + (P — p)y + (p — 1y?,

and
h(x,y) = p3x + p>+ (p? — p — D)y.
It holds that
h(x,%) = g%, X). ()

The following lemma, the proof of which follows by a simple computation and will be
omitted, provides three identities which will be useful in our study.

Lemma 1. Every positive solution of Eq1) satisfies the following identities

_Pn3— (P = DXy —xp—2

Xpn+d — Xp—1= , n=0,1,..., 3)
Xn+3
PXn+a — (P — Dxpy1 — xp—1
Xn+6 — Xn+l1 = , n=01,..., (4)
D+ Xn42
S (xnga, xp1) — §(Xn45, Xp42) — Xpg2Xn41
Xn+10 — Xn45 = , n=0,1,.... (5

(p+xn46)(p + xn14)(p + xp42)

Lemma 2. Let {x,};° _, be a positive oscillatory solution of El), which is bounded
from above and below. Lég, /1, and/, be the limits of three consecutive subsequences
Xn;s Xn;+1, @ndx,, 12 of {x,}°° _,. These limits cannot be all less thanin addition they
cannot be all greater than or equal i unless they are all equal to.

Proof. To prove this lemma we will consider several cases.
Casel: lg, 1,10 # x. Let 0 < € < min(|lp — x|, |l1 — x|, |l2 — Xx|). Then there exists
N > —2 such that

lo—€ <xuy <lo+e, l1—€ <xpysr1<l1+e, lp—e<xpyr2<lp+e.
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Suppose for the sake of contradiction that either @hak, I2) < x, or min(lg, I1, [2) > X.
It follows that either

Xpy <X, Xny+1 < X, Xny+2 < X,
or
Xny > X, Xny+1 > X, Xny+2 > X,

which in view of Theorem 1 yields a contradiction.
Case2: lp = x. There exist subsequences of the solufiefn;” , of Eq. (1), namely
{Xn;+4}724, Wherek = -5, —4, -3, -2, -1, 0, 1, 2 such that

_Iim Xnj+k =I.
i—00

We will show thatly < x orly < x or Iy =1y = x. Suppose for the sake of contradiction
that/; > x andl2 > x and alsd1 # x orlz # x. Using Eq. (1) we have

li_
=208 i 2 1012,
lia
from which it follows that either
lh=lh=x (6)
or
li_g>x fori=0,1,2 or l;_3>x fori=-2-1,0. (7

If (6) holds we have a contradiction. On the other hand if (7) holds arguing as in Case 1,
we get a contradiction. The cases whare x, Io = x are similar and will be omitted. The
proof is complete. O
Lemma 3. Let{x,} > _, be a positive oscillatory solution of E{L) such that

Xy =>maxx;, i=k—10k—9,...,k—1, (8)

with k£ > 10. Then the following are true

. ©

Xgtj > Xkyj-5, Jj=—1,—6,...,2, (10)
and

Xk—9 < Xf—4 < Xp4+1 < X. (11)

Proof. Since{x,}7> _, oscillates about, in view of (8) and Theorem 1, (9) follows. Fur-
thermore from (8) we have

pxk 2 (p—Dxi2+ x5 and pxi > (p — Dxx_3+ xi—s. (12)
In view of (3) and (4), we get

X1 = X—4  and  xgq2 > xp-3. (13)



44 E. Camouzis et al. / J. Math. Anal. Appl. 291 (2004) 40-49
From Eq. (1), we have

Xk+2

and sincec;42 > xx—3, Xk+1 = Xk—4, it follows that

Xk—1 2 Xk—6-
Similarly we can show that

Xk+j 2 Xktj—5, J=—1, —6,...,—2
Using Eq. (1), and in view of (8) and (9), we have
P+ Xk-2 < P+ xk

Xk

Therefore in view of (10) and (14), we have

Xk+1 = <x. (14)

Xk—9 < Xf—4 < Xp+1 < X
The proof is complete. O

Lemma 4. Let {x,}° _, be a positive solution of Eq1), which is bounded from above
and below. Let

s=Ilimsupx, and i=Iiminfx,.
n—00 n—00
If s =X, then
i=X.

Proof. Assumes = x. There exist subsequendes, 1«};°;, k = —3, =2, ..., of the solu-
tion {x,}>° _, such that

Iim x,, =ig=1i <ix= lim x,, 4% <x.

i—00 =00

In addition{it};° _5 is a solution of Eqg. (1) and so

+i_ +1i
iOZP. 3_pTio

— 9

i_1 3
which implies
p+io
i0
Hence,g = x. The proof is complete. O

Xz ZX.

Lemma 5. Assumep > 2. Let{x,}7° _, be a positive nontrivial solution of E@1). If for
someN > —2 we have

-xN+4<)E7 -xN+l<)E7 -xN+5>)E7 -xN+2>)E1 (15)
then

XN+10 < XN+45. (16)
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Proof. Suppose for the sake of contradiction that

XN+10 = XN+45. 17)
In view of (5) and (17) we have

J(cN+4, XN+1) 2 §(XN45, XN+2) + XN42XN+1. (18)
Whenp > 2, it holds thatp? — p — x > 0. In view of (15), (18) implies that

h(XN+a, XN+1) 2 8(XN+5, XN+2),
and so

h(x,x) > g(x,x)

which in view of (2) is a contradiction. The proof is completel

3. Boundedness and convergence of positive solutions of Eq. (1) inthecase p > 2

Theorem 3. Let p > 2, and {x,};2 _, be an oscillatory nontrivial positive solution of
Eq.(1). Then{x,};2 _, is bounded from above and below. In addition we have

Xp < Max x; (19)

<i<9

for all n > 10.

Proof. We first show that

xp < max  x; (20)
k—10<i<k—1

for everyk > 10. Suppose for the sake of contradiction that there ekist40 such that

Xy > max  xj. (21)
k—10<i<k—1

In view of Lemma 3, (21) implies that

Xp > X, (22)

Xktj = Xkhj5, j=—T1,—6,...,2, (23)
and

Xk—9 < Xk—4 < Xj41 < X. (24)

Casel. If xxk_10 < x, in view of (22)—(24), it holds that

max xi_; <x Or max xy_; <Xx
9<i<11 10<i<12

or

D+ Xk-2 - Pt X6
Xk Xk—3
which in view of (10) and Theorem 1 yields a contradiction.

Xk+1 = Xk—4,
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Case2. If xx_10 > x with the use of (23) and (24) it follows that there exigts 2, 3, 4
such that ma,_2;_3, xx—2;} <X < mMin{xg_2;_2, xx—2;+1} and so in view of Lemma 5
we havex;_2;16 < xx—2;+1 Which is a contradiction and proves (20).

Using (20) we show that (19) holds fér= 10,11, ..., 20. LetN > 20 be the smallest
integer such that (19) does not hold. Then

xy> maxyx; and xy_;< maxx;, j=12...,10 (25)
0<i<9 7T 0gig9

Combining (20) and (25) we get

max x; < xy < max x; < max x;,

0<i<9 N—10<i<N-1 0<i<9
which is a contradiction and so (19) holds true foralt 10. Finally, if {x,};2 _, is not
bounded from below there exists a subsequence which converges to zero. But then using
Eqg. (1), we can easily see that the next subsequence goes to infinity which is a contradic-
tion. The proof is complete. O

Theorem 4. Let p > 2. Then every positive solutidw,}>> _, of Eq.(1) converges to the
unigue positive equilibrium of E¢1).

Proof. In the case where the solution is nonilatory the proof follows from Theorem 2.
Therefore we assume that the positive solutiaf};° _, of Eq. (1) oscillates about. First
we show that
limsupx, =s =x.
n—o0
In view of Theorem 3{x,}7° _, is bounded from above and below. There exist subse-
quencegx,, +x}°,, k=—2,—1,..., suchthat

Iim xp,410=lo=s>l= lim x,,4x and s=l10>x, (26)
1—> 00 1—> 00

and the sequencgy )2 _, is a solution of Eq. (1). In view of (8), (10), and (11), (26)
implies

livs>1;, i=-2,-1,...,7, and l1<lg<l11<x. (27)

We now claim thatfg > x. For the sake of contradiction we consider the following three
cases.

Casel. If lg < x andlp < &, from (27) we havé_1 < l4 <lg < x andl1 <lg <11 < X.
Since maY/_1, lo} < x, in view of Lemma 2 it follows that; = /11 = lg = x. Using Eq. (1)
we get
p+ls oy +l10

ho o

which implies thatg = (p + Ig)/Is = x, a contradiction.

Case2. If Ig < x, lp > x, andl2 < x, from (27) we havé_1 <4 < x and in addition in

view of Lemma 2, it follows thalz > x. Hence, in view of Lemma 5 we conclude< /3
which is a contradiction.

x=Iln=
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Case3. If lg < &, lop > x, andl> > x, from (27) we haver <o <Is,l4<lg < X, and
I1 < x. Inview of Lemma 5 it follows thatig < /5 which is a contradiction and the proof
of the claim is complete. Hence

lg > x.
Sincelyo > 12 with the use of Eq. (1) we get
lg=2lg>x.
In view of Lemma 2 we have
lip=Ilg=Ilg=x.
In view of Lemma 4 the proof is complete.r
Theorem 4 shows that whem> 2, x is a global attractor of all positive solutions of

Eq. (1). From Theorem A, we have that wher> 2, x is locally asymptotically stable,
and so wherp > 2, x is globally asymptotically stable.

4. Unbounded solutionsof Eq. (1) inthecaseO< p <1
Lemma6. LetO < p < 1, andlet{x,}>° _, be a positive solution of E¢1) for which there
existsN > 3 such that

XN = Xp, n>=-—2. (28)
Then

Xpn=X, n=-—-2.

Proof. Using (28) withn = N + 5, (4) implies that

pxn+3+ (1—plxy <xy-2. (29)
Furthermore, in view of (28), we hawgy > xxy+3 and so (29) implies that

xN4+3 < XN-2. (30)
In view of (3), we have

XN+2 — XN-3 n (p—Dxng2—xN)

XN+3 = XN-2= (31)
XN+2 XN+2

From (28), we havey > xxy+2. Therefore in view of (30), (31) implies that

XN+2 < XN-3. (32)
In addition, from (28) we have

XN 2 XN-5, (33)
and by using Eq. (1) we get

XNi3= p+xn S P +xN-5 — xy_o. (34)

=
XN42 XN-3
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From (30) and (34) we havey3 = xy_2, and so (28) and (29) imply that
XN =XN-2.
In addition
pxiny3+ (A —plxy =pxnyz+ QA — play-2=xn-2,
from which it follows with the use of (4) thaty 5 = xy. Itis also true that
pxn + (1 — p)xn—2=xy > xn_5, (35)
from which it follows with the use of (3) thaty 11 > xy—_4. Using Eqg. (1) we get
XN = P+ xni1 > P+ XN-4 — xy_1. (36)
XN+3 XN-2
In view of (3) we have

INE3ZXN-2 (p—D(N13—xN4+1)

XN44—XN-1= (37)
XN+3 XN+3
Sincexy+3 =xy-2, (36) and (37) imply that
XN+3 < XN+1. (38)

From Eq. (1) with the use of (38) we get
XN S XN-1,

from which it follows, with the use of (28), that
XN =XN-1.

Thereforexy3 =xy =xy-_1 =xy—2. Using Eg. (1) we have
Xp=XxX, n=-2.

The proof is complete. O

Theorem 5. Let0 < p < 1. Then every positive solution of Hd.) is either unbounded or
converges to the positive equilibrium of Ed).

Proof. Let {x,}>_, be a positive solution of Eq. (1) which is bounded from above and
below. Set

s = limsupx,.

n— oo

There exists subsequencedaf} > _,, namely{x,,1x}°;, k =—2,—1,..., such that
Iim xppa=Ila=s52> lim xp, 4k = k. (39)
i—00 i—00

In addition the sequendé )2 _, satisfies Eq. (1). In view of (39) and Lemma 6, we have
Lk=x forallk> -2,

and so
S =X.

In view of Lemma 4, the proof is complete
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Lemma 7. LetO< p <1land {x,}>°_, be a positive nontrivial oscillatory solution of
Eq. (1) which is bounded from above and below. Then there exi@ts N < 2 such that

XN = SUpx, )2 . (40)
Proof. If N > 3, in view of Lemma 6 we get a contradiction. On the other hand assume
that

s =supx,}s o
and

s>x, foralln>-2.

Since{x,};° _, oscillates about, we haves > x. Furthermore there exists a subsequence
{23724 Of {x,}32 _, such that

lim x,, =s>x,
11— 00

which in view of Theorem 5 is a contradictionO

Theorem 6. Let0 < p <1 and{x,};2 _, be a positive nontrivial oscillatory solution of
Eq. (1) such that

supx, #xi, i=-2,-1012 (41)

Then{x,}7° _, is an unbounded solution of E(L).

Proof. Assume for the sake of contradiction that the solufign;> , is bounded from

above and below. In view of Lemma 7, we get a contradiction. The proof is complete.

Conjecture. Let 1 < p < 2. Then the positive equilibriuri of Eq. (1) is globally asymp-
totically stable.
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