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We investigate the existence of unbounded solutions and the period-two convergence of solutions of the
equation in the title with the parameter y positive, the remaining parameters nonnegative, and with nonnegative
initial conditions.
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INTRODUCTION

We investigate the existence of unbounded solutions and the period-two convergence of
solutions of the third order rational difference equation

Xn+\ — 7 - , n — 0 , 1 , . . . (1.1)

with the parameter y positive, the remaining parameters a, )8, S and A nonnegative, and with
nonnegative initial conditions such that the denominator is always positive.

The case 5 = 0, that is the second order rational difference equation

, rt = 0 , 1 , . . . (1.2)Xn+\
A -\- Xn

was investigated in Refs. [8,9], where the following period-two trichotomy result was
established for the solutions of Eq. (1.2). See also Ref. [11].

THEOREM A [SEE REFS. [8,9,11]). The following period-two trichotomy result holds for
Eq. (1.2).-

(a) Equation (1.2) has unbounded solutions if and only if

y> P + A.

*Con'esponding author. E-mail: gladas@math.uri.edu

Journal of Difference Equations and Applications
ISSN 1023-6198 print/ISSN 1563-5120 online © 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/joumals
DOI: 10.1080/10236190410001726412



964 E. CAMOUZIS et al

(b) Every solution of Eq. (1.2) converges to a {not necessarily prime) period-two solution of
Eq. (1.2) if and only if

y=)3-fA.

(c) Every solution of Eq. (1.2) has a finite limit if and only if
y< P + A.

For Eq. (1.1) we were able to extend statements (a) and (b) of Theorem A as described by
the following theorem which is the main result in the paper.

THEOREM 1

(a) Assume that
y>l3-\-A. (1.3)

Then Eq. (1.1) has unbounded solutions.
(b) Assume that

y = ^-l-5-l-A and )3 + A > 0. (1.4)

Then every solution of Eq. (1.1) converges to a (not necessarily prime) period-two
solution.

Equation (1.1) does not have a trichotomy character in the spirit of Theorem A for
Eq. (1.2). Actually it is not true that when

(1.5)

every solution of Eq. (1.1) has a finite limit. This is true when 5 = 0, but when 5 > 0,
Eq. (1.5) is not sufficient (even) for the local asymptotic stability of the equilibrium point of
Eq.(l.l).

Some third order rational difference equations were investigated in Refs. [1-7,10].
The study of rational difference equations is quite challenging and rewarding. Third order
rational equations with all of the variables Xn, Xn-\ and Xn-2 present in the equation are
extremely difficult to handle and very little is known about them.

We believe that the methods and techniques which we develop to understand the dynamics
of rational equations will also be useful in analyzing the equations in the mathematical
models of various biological systems and other applications.

In the second section, we present the proof of statement (a) of Theorem 1, and in the third
section we establish statement (b).

EXISTENCE OF UNBOUNDED SOLUTIONS

In this section we assume that

y > / 3 - f 5 + A (2.1)

and show that there exist solutions of Eq. (1.1) which are unbounded. Actually we exhibit a
huge set of initial conditions through which the subsequences of even and odd terms of the
solutions converge, one of them to oo and the other to

Py-h SA

y-8



THIRD-ORDER RATIONAL DIFFERENCE EQUATIONS 965

for all nonnegative values of the parameters a, )3, y, 5 and A in the equation. Furthermore, our
proof here extends and unifies all previously known results on the existence of unbounded
solutions for all special cases of Eq. (1.1).

More precisely we establish the following result.

THEOREM 2 Assume that Eq. (2.1) holds and let k be any number such that

0 < / t < y - / 3 - 8-A.

Then every solution of Eq. (1.1) with initial conditions x-2, x-i , xo such that

(X -j- y(y — A)
X-2,J:O G (0, y - A ) andx-\> ;

k

is unbounded and more precisely

)3y+5A
hmX2«+, = 00 and hmx^^ = — — ^ .

Proof Observe that

a -f j8xo -I- yx-\ -\- 8x-2 (X -f BXQ -f (y - A - XQ)X-\ -\- 8x-2
X\ - X-l = -— - X-\ = -—

A -I- xo A -I- xo
and so

Also,

X|

I- 5(x-i — x\) — kxi

^~ • y(y -A)- a- y(y - A) _

Therefore,

X2</3-t-5-)-it<y-A

and furthermore

_a-\- 13x2 + yx] -h 5xo y

""'" AT7

It follows by induction that for n s 0,

and
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and so, in particular.

(2.2)

Let S and / denote the following limits:

S— Iimsupx2n and / = liin înf

Note that from

and so for n >

Eq.

0,

(1.1),

a
X2n+\

+ )3X2« + 7X2«-1+SX2,
A + X2n

X2n—\ ^ A -\- X2n

1-1 ^ X2n-1

A +X2n

X2n+l y

Let e > 0 be given. Then clearly, in view of Eq. (2.2), there exists A' > 0 such that

^ + e , f o r n A .
A + X2n+l

By using the above two inequalities, it follows from Eq. (1.1) that for n> N,

T < {P+e)+(
A+X2n+l y

8A \ 8

y J y

By using the comparison principle and by taking limit superiors we find

y-8

and so clearly,

8A
" - y - 8 •

When

P = A = O,

we see that S = 0, that is limn_oo X2n = 0 and the proof is complete.

Next assume that

>0.

Clearly there exist subsequences {x2n, + 2} and {X2n,) of {x2n} and a number Lo G. [I,S]
such that

limx2n,+2 = / and Jimx2n, = Lo-
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Note that when i4 = 0, then /3 > 0 and so Xn+i > ^ > 0 for n ^ 0. Therefore in all cases,
A + LQ > 0. From Eq. (1.1) we have

X2n+\ a 1 Px2n 1 y 8x2n-2 1
= -: h- h-: h-

X2n-1

and

X2n+2 = -7—. 1" 7~; <' -
A + X2n+i A

By replacing n by «,- in the above two identities and then by taking limits, as j —» oo, we find

and

8

7

Therefore,

. .., 8
( L o ) < L o (2.3)

y
and so

Hence

^ y- 8

and so from Eqs. (2.3) and (2.4),

y y - 6

The proof is complete. D

PERIOD-TWO CONVERGENCE

Our aim in this section is to show that when

y= P+S + A

and

I3 + A>O (3.1)

then every solution of Eq. (1.1), that is every solution of the equation

A + Xn
, n = 0 , 1 , . . . (3.2)
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converges to a (not necessarily prime) period-two solution of Eq. (3.2). The restriction (3.1)
cannot be relaxed in this period-two convergence result. In fact, when /3 = A = 0 the
resulting equation

Xn-i -\r8Xn-2
, n = 0 , 1 , . . . (3.3)

Xn

with
a > 0 and S > 0

has unbounded solutions. See Refs. [2,7]. In particular, every solution of Eq. (3.3) with

X-2 = XQ-^ 8

is such that

X2n = xo, for n > 0

and

8

The proof of statement (b) of Theorem 1 is long and tedious and in order to simplify it,
we first establish several lemmas describing the character of solutions of Eq. (3.2). We begin
by stating several identities which follow from Eq. (3.2) and which will be used throughout
this section. They are all valid for n > 0.

a + I3x2n + {p+8 + A)X2n-i + 8x2n-2 ,^ . .
X2n+\ = 7— (3.4a)

A + X2n

^ 4 ^ ^ 5 ^ ^ ^ (3.4b)+ (/3 + + A)^5
X2n A+ X2n

a + I3x2n+l +il3+ 8 + A)X2n + 8x2n-l .. . ,
X2n+2 = T— (3.5a)

A + X2n+l

^^ / ^ ' (3.5b)
A -I- X2n+1 A + X2n+l A + X2n+l A + X2n+\

1^ + ^ r ^ , ^ . ^ .•̂ ^̂
Xn+2 Xn ——— (Xn+l Xn-l) + —— (Xn Xn-2) W-OJ

X2n+2 ~ X2n = -—, {X2n+\ ~ X2n-\) + V"; {X2n ~ X2n-2) (3.7)
A f X A | X

{X X) + iX ~ X2n-l) (3.8)

X2n+l - X2n-\ =

T { X 2 n + 2 X2n) + T
A + X2n+2 A + X2n+2

l5+ 8-X2n)X2n-l + 8X2n-

A -|-X2n

a + )3x2«+l()3 + 8 - X2«+l)X2« -f- 8X2n-l
X2n+2 - X2n = J - (3.10)

4+X
X2n+\ _ a 1 I ft ^2« 1 ^ 13+8 + A ^ ^ X2n-2

A + X X AV XX2n~\

X2n
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Among the above equations, the identity described by Eq. (3.6) is at the heart of the
period-two convergence of solutions of Eq. (3.2). Its proof is a consequence of Eq. (3.2) as
follows. Note that

and so.

8
^ (Xn-Xn-2).

From Eq. (3.6), and more precisely from its equivalent versions (3.7) and (3.8), it is now
clear that the following result is true about the subsequences of the even terms {JC2« }"=_i and
the odd terms {x2n+i}'^=-i of every solution [xn}'^^_2 of Eq. (3.2).

LEMMA (3.1) The two subsequences [x2n] and {x2n+\] of every solution of Eq. (3.2) are either
both eventually monotonically increasing, or they are both eventually monotonically decreasing,
or one of them is monotonically increasing and the other is monotonically decreasing.

In the sequel we will denote the limits of the subsequences of the even and odd terms of
a solution of Eq. (3.2) by LQ and L\, respectively. That is.

Ln — limjC2n and L\ = li

Each of these limits may have only one of the following three values:

0, 00, or a positive real number.

Now let us look for all period-two solutions

. . . , < / ) , 4,, ...

of Eq. (3.2). From Eq. (3.2) we have

and so

</)(//= a -I- ()8 -I- 8){4> -t- ip)

which implies that

and
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When <̂  5̂  i/* we have a prime period-two solution, while when (j)= i}/we see that </> is the
equilibrium x of Eq. (3.2). Note also that in all cases

X, <}>, ijj, e ( /3 + 5,oo)

provided that a + )3 + 5 > 0.
For the sake of completeness and unification, our proof here of the period-two convergence

of Eq. (3.2) includes all previous special cases of Eq. (3.2). When

a = j 3 = S = 0 (3.13)

Eq. (3.2) reduces to

Ax -1
X = j ^ , for n = 0 , 1 , . . . (3.14)

with A > 0, from which it is clear that

Therefore in this case, every solution of Eq. (3.14) converges to a (not necessarily prime)
period-two solution of the form

...,(/), 0, . . . (3.15)

with <̂  > 0. This completes the proof of Theorem l(b) when (3.13) holds.
When 5 = 0, that is for the equation

()3 + A) ;c i
, n = O,l , . . . (3.16)X n + i , n O , l , . . .

A-\-Xn

it follows from Eq. (3.6) that

B-\-A
Xn+l - Xn = -— {Xn+\ - Xn-\), for « > 0. (3.17)

A + J:«+I

From Eq. (3.17) we see that for every solution of Eq. (3.16) exactly one of the following
statements is true for all n > 0 :

Xn+\ > Xn-\.

Clearly all bounded solutions of Eq. (3.16) converge to a period-two solution. As in
Ref. [11, p. 40], assume for the sake of contradiction that there is an unbounded solution, that
is a solution such that:

\imX2n = 00

n—x ' "

while {x2n+i} is increasing. The case where

]lrnx2«+i = 00

and {x2n} is increasing is similar and will be omitted. Choose N ^ 0 such that
/3 + A 13 + A

A + X2i\/.\-\ A + X2K
< 1.
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Define

P+A p+A
p = -T— -r-, and a = (XJN -

A+X2N+\ A+X2N
Then

p+A p+A
A+X2n+l

Hence from Eq. (3.17) we find

< p, for n> N.

P + A .
X2N+2 ~ X2N = 7— WN+l ~ X2N-\)

A+X2N+\

- X2N-2) < crp-

1̂ < X2N + YZT'' for M = 1,2,. . . .

A +X2N+\ A +X2N

It follows by induction that for /u, = 1,2, . . .

and so by summing up

This contradicts the assumption that the subsequence of the even terms converges to 00,
and completes the proof of Theorem l(b) when 5 = 0. Therefore in the sequel we will
assume that

6>0.

Returning to the period-two solutions of Eq. (3.2) the following result is now clear.

LEMMA (3.2) All prime period-two solutions

of Eq. (3.2) are given by

with

(/) 7̂  t/» and (t>, 41 G (13 + 8,00).

Clearly, when both LQ and L\ are positive numbers, the sequence

...,Lo, L\, ...

is a period-two solution of Eq. (3.2) and as we showed before

In particular.
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When LQ = L\, then the solution converges to the equilibrium x of Eq. (3.2) and when
LQ ¥= L\ the solution converges to a prime period-two solution of Eq. (3.2). Note that Eq. (3.2)
has a huge set of prime period-two solutions, as described by Lemma 3.2.

The following Lemma shows that neither Lo nor L\ can be zero.

LEMMA (3.3) Neither of the subsequences {x2n\ and {x2n+\} rnay converge to zero.

Proof Assume for the sake of contradiction that

The case where L\ = 0 is similar and will be omitted. Now note that when Lo = 0, A must be
positive. Otherwise A = 0, /3 > 0, and Eq. (3.4b) implies that Xn+2 S: /3 > 0.

There are three possibilities for L\: 0, oo, or a positive number. We will show that each of
them leads to a contradiction.

If L\ = 0, then both subsequences are eventually decreasing to zero and Eq. (3.9), with n
sufficiently large, implies that

„ ^ g t /3X2» -I- (j3 -I- 3 - X2n)X2n-\ + 8x2n-2 ^ „

A + X2n+\

which is impossible.
If L\ G (0, oo), by taking limits in Eq. (3.4a) we see that

L , =

which is also impossible.
Finally if Li = oo, by taking limits in Eq. (3.11) we find

(X2n+x\ P+8 + A
hm =
"^~v^2«-iy A

and from Eq. (3.12) we obtain

which leads to a contradiction, as n —• oo. The proof is complete. D
It follows from Lemma 3.3 that Lo and L\ are positive numbers or oo. The next results

establish that neither Zo nor Lj may be below

LEMMA (3.4)

Lo, L,

Proof Assume for the sake of contradiction that

Lo < )3 -f 5.

The proof when L\ < )3 -I- 5 is similar and will be omitted. There are two possibilities for L\:
it may be positive or oo. We will show that each of them leads to a contradiction.
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G (0,00) then

is a period-two solution of Eq. (3.2) and so, by Lemma 4.2, Lo > ;8 + 6, which is a
contradiction. On the other hand, if L\ = oo, then from Eq. (3.11)

and so from Eq. (3.12),

that is

which is also a contradiction. D

LEMMA (3.5)

(i) IfLo e (0,00) andU = <», then Lo = p+S.
(ii) IfLo = 00 and U G (0, oo), then L| = /3 + 5.

Proof We will prove (i). The proof of (ii) is similar and will be omitted. From Eq. (3.11)
we obtain

and so from Eq. (3.12),

Hence

and the proof is complete. D

LEMMA (3.6) It is not possible that both LQ and Li are equal to oo.

Proof Otherwise from Eq. (3.11)

1 < lim = 0

which is impossible. D

LEMMA (3.7) Every solution of Eq. (3.2) is eventually bounded from below by (/3 + S).

Proof Assume for the sake of contradiction that there exists a solution of Eq. (3.2) which is
not bounded from below by {(3+8). Then in view of the previous lemmas the only thing that
the solution can do is that one of the subsequences {x2n} and [x2n+i) eventually increases to
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(/3 + 8) while the other eventually increases to oo. We will assume

with both subsequences being eventually increasing. The case where the even and odd
subsequences are interchanged is similar and will be omitted.

Let e G (0, /3 + 5) be given and sufficiently small, and let A' s 0 be such that

)3 + S - e < X2« < j8 + S for n> N.

Then for any NQ^ N and sufficiently large we have

which implies that

X2iv,,+2 - " • ' ^ - - ^ " o ^ ' ' ^^- • " ' ^'--"^ ' - ^ " o " ' < ^ + g. ( 3 . 1 8 )

A + X2No+l

Define

Then Eq. (3.18) implies that

a + j8x2/v,,+i +(13+8 + A)X2N^ + 8X2N,-I < ()3 + 8)A

and so

/3 +
o o

(i8 + 5 + A)
a-\ H 5 (p + d - e)H

Hence

and by using Eq. (3.2),

7
A + X2N,,

Therefore,

and so

( 1 3 + 8 - X2No)X2No-l > R o ( A + X2N0) - a -

that is.
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Hence

or equivalently,

o-\ - a - l3X2No-\ - ()3 + S -t-

Thus,

R 1
X2No-\ > X2N0-3 +-^(A+ X2N0) + "5()3 + A)(X2No-2 " X2N0)

o o

> X2N,-i +^(A + /3+5-e)-i()3-f A){^ + S)
o o

and so from Eq. (3.2) we see that

a + pX2No-2 + 03+8 + A)X2N,,-3 +

> X2N0-3 + -riA + P + 8 - e ) -
oriA + P + 8 e)
o o

Therefore,

/?|(A + X2N0-2) - a - I5X2NB-2 -

p+ o - X2N0-2

where

^ 13 +8 +A-6^ (
/ ? = R -

It follows by induction that for A: > 0,

X2No-(2k+\) >

with

13+8 + A-e

Clearly for A'o and k sufficiently large, this leads to a contradiction and the proof of the
lemma is complete. D

We are now ready to present the proof of Theorem 1 (b).

Proof (of Theorem l{b)) Clearly every bounded solution of Eq. (3.2) converges to a
(not necessarily prime) period-two solution. So assume for the sake of contradiction that
Eq. (3.2) has an unbounded solution. We will assume that

= 00 and

with the subsequence of even terms of the solution being eventually decreasing and the
subsequence of odd terms being eventually increasing. The case where the behavior of
the even and odd subsequences is reversed is similar and will be omitted.
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Then from Eq. (3.6) we obtain

A + X2n+2

8

'^ 13 + S + A

Therefore,

iX2n+\ - X2n-\), for « > 0.

and by summing up we find

X2n+\
P + A

This contradicts the hypothesis that

1 = 00

and completes the proof of the theorem. D
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